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Gas Network Simulation with the Aid of the Method of Characteristics * 

 

1. Introduction 

At the dawn of new millenium the natural gas economy in Germany faces quite new 

challenges. The EU internal market, the new frame conditions for policy in the field of 

power distribution, the opening and liberalism of power markets and the sharpening of 

gas-to-gas competition associated with it urge to a higher flexibility, to the introduction 

of new marketing concepts and to a higher gaining of the gas delivery enterprises via 

the use of new or not yet exhausted potentials for cost savings. 

 

In view of the new market conditions, the gas network simulation, that is obtaining the 

data approximating the information about the nonstationary flow processes in the 

regional and superregional high-pressure networks, wins an increasing importance. The 

temporal separation of amount and price, the control of very various properties of 

natural gas, as well as storage and effective use of Spottmengen lead to quite new 

tasks, which are related to a high economical hazard and can be solved rapidly only 

with the aid of qualitatively new control technology and the most advanced simulation 

techniques. 

 

In this article, a mathematical model is presented for the computation of highly 

dynamical and, in particular, non-isothermal flow processes in gas networks on the 

basis of the knowledge and experience in the field of gas network simulation 

accompanying the process. The basis of this model is constituted by the method of 

characteristics, which has still not found any widespread application in Germany despite 

its outstanding properties.  

 

The method of characteristics represents an innovative supplement to such well-known 

simulation techniques verified in practice as GANESI and SIMONE. This method will 

win the practical importance for the simulation of highly dynamical flow processes, 
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optimization of pre-heating, control of gas properties, obtaining the new knowledge in 

the field of retrograde condensation as well as for the modelling of multiphase flows. 

 

 

1. Developments in the Field of Gas Network Simulations 

 

The first works in the field of computation of nonstationary, i.e. time dependent flow 

processes in pipelines were carried out already in the early 20
th

 century by Joukowksy 

[1] and Alliévi [2]. The analytical methods enabled then one to solve and to represent 

graphically simple problems. 

 

The development of the first computational methods for nonstationary flows in gas 

pipelines, that is for the computation of time-variable pressure and flux distribution in 

the network under variable boundary conditions had begun in the early sixties of the 

20
th

 century. 

 

At that time, the computations were else very time-consuming and required the use of a 

big computer. At present, such computations are carried out preferably with the aid of 

numerical solution techniques on small but very powerful desktop computers. A 

breakthrough in the nonstationary simulation of flow processes in gas networks was 

made in 1976 by Weimann [3] with his code GANESI. This code or its specific variants 

for different firms are now used in many European countries [4]. 

 

Besides GANESI, which is exploited since 2000 by PSI AG, there are a number of other 

codes for nonstationary simulation of flow processes in gas networks. These are, in 

particular: 

 

- the code developed by SIMONE Research Group in Prague, Czech Republic, which 

is used in Germany by the LIWACOM firm [6]; 

- the USA codes 

 of the Enterprise Group STONER Associates Inc., the STONER - PIPELINE -

Simulator (SPS) [7] and  
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 of the Gregg Engineering, the code WinTran
TM

Online
TM

 [8]; 

- the Canadian code PIPEFLOW of the Neotechnology Consultants Ltd. [9]; 

- the Australian code FlowTran of the firm William J. Turner Pty Ltd. [10] 

- and the Danish Gas Network-Management-Software of the firm LICENERGY  [11]. 

 

There are the interested groups, which are concerned with the exchange of new 

knowledge and experience in the field of gas network simulation, for the code GAMOS 

(it incorporates the computational kernel of GANESI), SIMONE, and for a number of 

other codes from USA, Canada, Australia, Europe, and Asia. The Pipeline Simulation 

Interest Group with headquarters in the USA [12] is the most well known. 

 

 

2. Fundamentals of Gas Network Simulation 

 

3.1 Derivation  of  Model  Equations 

 

The conservation laws for the mass, momentum, and energy known from the gas and 

fluid dynamics [13,14,15] constitute the basis for the description of a one-dimensional 

nonstationary gas flow in a pipeline: 

- continuity equation 
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- momentum equation 
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After the conversion of surface integrals to volume integrals (using the Gauss integral 

theorem), differentiation of these volume integrals with respect to time, transition to limit 

V  0,  and the substitution of the values of gas density and velocity averaged over the 

pipe cross-section according to formulas 
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the system of partial differential equations follows from the above equations for the 

computation of four unknown functions  (x,t), p (x,t), m (x,t) and T(x,t) : 
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Equations (5) to (8) form a system of nonlinear partial differential equations of 

hyperbolic type. It is characterized by a finite speed of the propagation of disturbances, 

which agrees very well with the gas adiabatic speed of sound.  

 

The gas temperature in a pipeline generally differs little from its immediate environment. 

The derivative  xT /   and  the heat flux 4 q / D can, therefore, be neglected. The 

following relation then holds for temperature oscillation:  
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Strictly speaking the nonstationary flow processes in gas pipelines cannot be 

considered as the isothermal processes. Right because the heat exchange in gas 

proceeds very slowly the pressure and mass flow rate oscillations are always 

accompanied by a local temperature change. The heat released thereat cannot be 

transferred sufficiently quickly from the gas particles, that is the process occurs 

practically under the adiabatic conditions [16].  

If we extract the density in the continuity equation with the aid of the equation of state 
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and replace the derivative of temperature with respect to time by equation (9)  
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then we obtain with 
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the well-known system of equations 
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for the computation of two functions p(x, t) and m (x, t) of a nonstationary pipe flow 

under isothermal conditions. 

The system of equations (13) constitutes, in this or slightly different form, the basis of 

the mathematical model for a variety of codes for gas network simulation [17, 18, 19, 

20].  

 

3.2 Analytic Solution Methods 

In the 60ies and 70ies years of the 20
th

 century there were numerous attempts at 

solving the system of nonlinear partial differential equations (13) analytically. The 

purpose was to obtain with the aid of the computer and measuring technology, which 

was available at that time, as actual as possible assertions about the time dependent 

flow processes in a high-pressure network, which is an important prerequisite for its 

rapid observation and control.  

Although the numerous works [21, 22, 23, 24] in this field of the mathematical physics 

have not gained any widespread acceptance in the gas network simulation, they are 

nevertheless of significant theoretical and practical importance for the understanding of 

the physics of nonstationary flows. 

An important preliminary operation for the analytic solution of the system of differential 

equations (13) is its linearization. The techniques, in which the so-called friction term is 

defined as follows, have gained a widespread acceptance: 
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With this ansatz, the system of equations (13) simplifies as follows: 
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The both equations can be reverted to a single second-order partial differential equation 
(the telegraph equation) both for the pressure an for the mass flow rate: 
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From these equations it follows for the so-called „long pipe model“ that the inertia forces 

are much smaller than the friction losses and can, therefore, be neglected, which leads 

to the heat conduction equation 
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or, for the so-called „short pipe model“, that the friction forces are much smaller than 

the inertia forces and, therefore, can be neglected, which leads to the wave equation: 
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The analytic solution of such second-order partial differential equations for simple initial 

and boundary conditions represents no problem when using the Fourier or Laplace 

transform. The "Symbolic Mathematics Software" (Macsyma, Maple, Mathematica) is 

now used more and more frequently for the solution of suh tasks. 

 

Example: 
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The pressure curve in a gas pipeline with length L and diameter D before and after gas 

release to the moment of time  t = t1  in the amount of Am  at the pipeline point x = x1 is 

to be computed. The general solution of the following partial differential equation is 

sought for: 
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which satisfies the following initial and boundary conditions: 
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The general solution computed with the aid of the software system "Macsyma" [25] is  
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Intense research is being conducted in the field of symbolic solution of partial 

differential equations in USA and Canada [26, 27]. 

 

3.2 Numerical Solution 

The variety of computer codes available for the gas network simulation are based on an 

iterative numerical integration of the system of partial differential equations (13). 

 

For relatively slow (quasistationary) duct flows, the numerical method developed by 

Weimann [3, 18] and employed in the software package GANESI (GAS NETWORK 

SIMULATION PROGRAM) has proved to be remarkable in practice. 

In this method, the system of partial differential equations retaining the time derivatives 

is reverted into a semidiscrete system of ordinary differential equations. The resulting 

substitution model (Figure 1) has the structure of a chain conductor with concentrated 

parametric elements storage (the state quantity p), the friction drag and mass inertia 

(assigned jointly to the state quantity m ), which includes the boundary conditions. 

The differential equations of state read [28]: 
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If the state variables p and m  are considered as the components of state vector y , 

then the concentrated parametric substitution model may be written also as a vector 

differential equation: 

 

With the state vector 

T

nn pmpmpy
1321

...  

and the boundary value vector 

 

A number of important criteria and conclusions for the observability of the mathematical 

model can be derived from equations (28) to (30) [29]. 

An implicit integration method is used for the solution of the differential equations of 

state (23) [3, 18, 28]. 

 

 

3. The Method of Characteristics 

 

4.1. The Basics 

The method of characteristics developed in 1859 by Bernhard Riemann [30] has been 

used successfully since the 40ies of the 20th century for the solution of hyperbolic 

partial differential equations [31 - 40].  
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To derive the characteristic equations of an isothermal duct flow the system of 

equations (13) is written as follows: 
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The multiplication of equations (28) with sound velocity c and subsequent addition and 

subtraction with equation (27) yields the system of equations (27), (28) in its 

characteristic form: 
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Figure 2 shows in the x, t plane two straight lines, which are determined by the following 

equations: 
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These lines are called the characteristics of the system of partial differential equations 

(27), (28). The expressions 

x
c

t
  and  ;

x
c

t
 (32) 

are the total differentials of gas dynamic parameters, which are calculated along the 

characteristics with positive and negative slopes. The relation 

;, mpcmcp
td

d
 (33) 

holds along the straight lines of the first group, whereas the following relation holds 

along the second group: 

., mpcmcp
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 (34) 

The quantities mcp  and mcp  are termed the Riemann invariants. For the 

case 0, mp , i.e., the friction term is neglected, they are constant along the 

lines 

c
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In accordance with the above, the relation 

p cm const ; (35) 

holds along the line AM  (see Figure 2), and the relation 

p cm const  (36) 

is valid along the line BM . 
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Since the values of the pressure p  and the mass flow rate m  are known at t = 0, the 

values of ( , )p x t  and ( , )m x t  can be computed from the well-known d‘Alembert 

formulas [32]: 
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at any point  M  for any time plane.  This  method was used for the first time by M. L. 

Bergeron [41] for a graphical solution of the wave equation.  

In the case when , 0p m  the d’Alembert formulas become inapplicable 

because the Riemann invariants are not constant along the characteristics. After the 

conversion of the differentials in equations (33) and (34) into finite differences they can 

be integrated approximately. For this purpose, the characteristics x c t const  and 

x c t const  are drawn in the x, t plane in the region 0 x L  and 0t , and they 

intersect at the ( , )
i j

x t  points (Figure 3).  

 

The relations for the spatial and time steps then read: 
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For stability reason, the Courant condition 
x

t
c

 is to be always satisfied [32]. 

 

Equations (37) and (38) in the form 
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imply according to Figure 3 the following recursion formulas for the computation of the 

unknown function values for 
j

i
p  and 

j

i
m  in the time plane 

j
t  from the known values of 

these functions in the time plane 
1j

t : 
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where the quantities 
1

1

j

i
 and  

1

1

j

i
 are determined from equation (29). 

The values of the desired functions 
j

i
p  and 

j

i
m  can be determined with the aid of the 

recursion formulas (41) and (42) only in the region 0 x L  and 0t . For the 

boundary conditions (0, )p t  , ( , )p L t  or  (0, )m t  ,  ( , )m L t   as well as for two initial 

conditions ( ,0)p x  and ( ,0)m x , the corresponding recursion formulas must also be 

derived depending on the task to be solved. 

 

Example: 
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0 1 0
( )

j jp f m  - for the pressure at the inlet of pipeline ( x = 0) 

2 00
( )

jjm f p  - for the mass flow rate at the inlet of pipeline ( x = 0) 

this implies for all 1j   

1 11

0 1 10 1

j j jj jp c m p c m x ; (43) 

3
( )

j j

nn
p f m  - for the pressure at the outlet of pipeline (x = L) 

4
( )

jj

n n
m f p  - for the mass flow rate at the outlet of the pipeline (x = L) 

this implies for all 1j   

1 11

1 11

j j jj j

nn n nn
p c m p c m x ; (44) 

and for the case of a stationary initial condition 

2 2

0 2 0

0i i

c m
p p x

D
. (45) 

The derivation of the complete set of recursion formulas for the boundary and initial 

conditions (compressors, regulators, couplers, bypass, change in the nominal diameter, 

etc.) emerging in practical operation of networks would explode the size of the present 

contribution. Therefore, we have to refuse their presentation here. 

 

4.2. Computation of Highly Dynamical Flow Processes 

Highly dynamical (nonstationary) flow processes cannot be computed with the aid of the 

system of equations (13) or can be computed only in a rough approximation. 

The method of characteristics is nevertheless very well appropriate for this purpose. 

Figure 4 shows the solution found with the aid of equations (41) and (42) for the case of 

blowing-out of a gas pipeline DN 200 10,000 m in length. 

The boundary and initial conditions read: 

 

 

0
0jm  - the mass flow rate at the pipeline inlet, that is at  x = 0, is zero; 



 16 

 

5
10

j

n a
p p Pa  - the pressure at the pipeline end, that is at x = L, is equal to the air 

                                 pressure 

 

At t = 0 the pressure in pipeline is constant: 
0 5

2 10
i

p Pa , i.e., the mass flow rate 

0 0
i

m is equal to zero ( 0 ).  

At the moment of time t = 0 the gas pipeline is suddenly opened at its end (x = L).  

Under the neglection of the boundary and contraction effects of the outflowing gas, the 

pressure and mass flow rate presented in Figure 4 are obtained in the first 40 seconds. 

The figure shows clearly a shock wave propagating against the flow direction, which, 

however, decays very rapidly in compressible media. 

 

4.3. Computation of Non-Isothermal Flow Processes 

The method of characteristics enables one to compute rapidly, simply, and with a high 

accuracy on the basis of the system of equations 
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also intrinsically non-isothermal flows, for example, the compression and rarefaction 

processes or the flows at a direct heat supply and removal, without the linearization of 

the partial differential equations (46) – (48)  in a coupled form. 

In the case of the above presented equations, one deals with a system of partial 

differential equations of hyperbolic type, which possess three real characteristics 

passing through each point of the x, t plane. 

To determine these characteristics the lines are sought for in the x, t plane on which the 

ordinary differential equations exist, which involve the values of the functions p , 

m and T  that are to be found. 

If one sets x = x ( ) and t = t ( ), where  is aparameter along these lines, then the 

following relations are valid along these lines: 

 

;
p d x p d t d p

x d t d d
 (51) 

m d x m d t d m

x d t d d
;  (52) 

;
T d x T d t d T

x d t d d
 (53) 

 

These expressions associate the partial derivatives of x and t with the functions p , 

m and T .  Together with equations (46) – (48) they form a system of six algebraic 

equations for the determination of partial derivatives 

 

p p m m T T

t x t x t x
, , , , , ;  (54) 

 

of the functions which are to be determined.  
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It is here of interest only the case, in which the system of six equations has a variety of 

solutions. The „necessary condition“ for this is 

 

2
1 0 0 / / 0

0 1 1 0 0 0
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0 0 0 0 0 .

0 0 0 0
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Equation (55) implies (all terms of the order 
2 2

/ c  are neglected) 

the direction of characteristic 1  1

1

1
: ;

2

dx
c

dt
 

 

the direction of characteristic 2  2

2

1
:

2

dx
c

dt
 (56) 

 

and the direction of characteristic 3  3

3
: .

dx

dt
 

Equations (56) cannot be integrated directly as in the case of an isothermal flow 

because they involve the functions, which depend on the desired solution: 

 

 

( ) ( , )c T c x t  and ( , ) .x t  (57) 

 

They show, however, clearly that three curved characteristics pass through each point 

in the x, t  plane. 
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Condition (55) dos not suffice for the solution of the above formulated problem. Along 

with the „necessary condition“, the following „sufficient condition“ must also be 

determined, which is termed in the profile literature also as „compatibility condition“ 35, 

36]: 

 

p

c p T

c

dt dx dp

d d d

dt dx d m

d d d

dt dT

d d

2
1 0 0 / / 0

0 1 1 0 0

1 0 0 0

0 0 0
0

0 0 0

0 0 0 0

. (58) 

 

The soluition is as follows: 

 

v

dx

T d m dx p dx dxdt
c
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2

2

2 2
1 1 ;

 (59) 

Equation (59) forms together with the characteristics (56) the basis for the computation 

of one-dimensional non-isothermal nonstationary flows of compressible media. 

 

If the temperature in the pipeline neighborhood does not depend on time then the heat 

flux through the pipe wall into or out of the surrounding ground can be computed with 

the aid of the formula [41] 
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T U

T T  (60) 
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The heat transfer coefficient T  depends on the heat exchange between the gas and 

pipe wall, the heat conduction through the pipe wall including its coating, and on the 

heat exchange with the ground. A number of methods and formulas are known for its 

determination [17,42,43]. 

 

The characteristics (56) with condition (59) cannot be resolved in closed form. They 

must, therefore, be intgrated numerically, i.e., the differentials are replaced in the case 

of isothermal conditions by finite differences. In the case of the system of equations for 

the determination of the functions ( , )p x t , m x t( , )  and ( , )T x t , the following 

formulas serve this purpose (Figure 5):  

in the direction of the characteristic 1 - 3: 

1 1,1 1
( ) ,x x t t  (61) 

in the direction of the characteristic 2 - 3: 

2 2,2 2
( ) ,x x t t  (62) 

and in the direction of the characteristic 5 - 3: 

3 3,5 3
( ) .x x t t  (63) 

On each of these characteristics, the corresponding compatibility condition must be 

satisfied in accordance with equation (59). This finally gives also a system of equations 

for the determination of p , m  and T  at point 3. The computational diagram is 

presented in Figure 6. 

 

The advantages of the method of characteristics are obvious. Figure 7 shows only for 

the demonstration purpose the pressure equalization between two 2,000 m long gas 

pipelines DN200, which are interconnected via a rapidly closing control valve. The 

natural gas under the pressure of 15 bar fills pipe I, and the gas in pipe II has the 

pressure below 10 bar. When the control valve is suddenly opened at time t = 0 at 

location x = 0, then this leads, as expected, to a cooling (rarefaction), and to a gas 

heating (compression) in pipe II. Depending on the input parameters, an equilibrium is 

established between the temperature gradient and the flow velocity. The consequence 

is that the contact zone between the cold and warm gas moves with a more or less 
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significant velocity into pipe II. In the example under consideration, it has moved at a 

distance of only 100 m from the control valve after 60 seconds (Figure 7). 

The example shows very clearly a close relation and the mutual effect of the pressure, 

flux, and temperature on the local flow conditions in high-pressure gas pipelines.  

An adaptive simulation of flow processes in gas pressure regulator devices with 

preliminary heating is possible on the basis of the above numerical method. In this way, 

a preliminary heating adapted to the specific conditions (i.e., the compensation of the 

Joule-Thomson effect adapted to actual conditions) can be implemented on the basis 

of actually appearing temperature diminution. Careful computations show that this 

application of the method of characteristics oriented toward practice enables one to 

save annually over 2 Mio. DM on the power costs in the German gas economy. 

Further application possibilities, which can only be mentioned here, are the design of a 

dynamic control of gas properties and the development of new tools for theoretical 

clarification of certain phenomena of retrograde condensation of the natural gases in 

the high-pressure networks. 

 

 

Also when the three characteristics are in this case no more linear but curved, and 

cannot be determined explicitly from their ordinary differential equations, the 

advantages of the method of characteristics are immense.  

 

 

In comparison with the classical difference method, 

 

- The mathematical model of the method of characteristics describes and reflects 

remarkably the physical behaviour, which specifies the nonstationary flow through 

propagation, reflection, and superposition of pressure waves. The existence of 

these characteristics (also termed the Mach lines) has been proved long ago not 

only theoretically [30, 32, 36] but also practically [44]. 

 

- the method of characteristics is not „blind“, i.e., the modelled region agrees with the 

one, in which the processes to be descibed actually occur; 
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- the  systems of partial hyperbolic differential equations are converted to the systems 

of equivalent algebraic equations or ordinary differential equations, which can easily 

be solved explicitly or implicitly; 

 

- the spatial and time steps are physically related to each other in this solution 

method, which ensures a considerable reduction of the numerical dispersion.  

- The method of characteristics is a better, more accurate and reliable model. Even 

highly dynamical and complex flow processes (the filling and …processes in gas 

pipelines, simulation of the effects at leekage, control of gas temperature and other 

gas properties, retrograde condensation, dust transport, etc.) can be modelled and 

computed with this method. The linearization of friction term is not needed. 

-  

Despite these outstanding properties, there are in the world considerable clauses for 

the use of the method of characteristics [3, 18, 45, 46]. There is a widespread opinion 

that the stability condition  

1
;t x

c
 (64) 

represents a „significant limitation“ and, therefore, the method of characteristics does 

not suit for the mathematical modelling of nonstationary pressure, flow, and 

temperature variations in the gas networks. 

 

In view of a high computing speed of the present-day personal computers, it is 

especially difficult to follow the widespread opinion that the input of small time steps 

(e.g. 3...1t s) witnesses against the use of the method of characteristics. Even 

the computations over 24 hours with 3600 *24    87,000 time steps represent no 

problem today for the advanced Pentium computers. 

 

In addition, there is a widespread opinion that the deviation of the curved characteristic 

grid from the model grid may lead to errors under the consideration of temperature 

(Figure 8). 
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The gas flow velocity in high-pressure networks lies in subsonic range, i.e., at relatively 

small Mach numbers. This implies: 

 

(w / c)² << w / c  

 (65) 

1
0, 025

40

w

c
 .

2,1
c

td

xd
 

 

This means that the deviation of the curved characteristic grid from the model grid lies 

within the limits of the numerical acuracy. In addition, a correct choice of the equation 

for heat exchange ( ) with the environment is so problematic for nonstationary 

processes that all the remaining qustions about a „more or less high accuracy“ get 

completely into the background. 

 

 

4. Conclusion 

 

Basing on a brief overview of the developments in the field of gas network simulation, 

its theoretical background and available practical experiences at the design of 

simulation accompanying the flow processes in a regional high-pressure network, the 

author has presented the possibilities for the use of the method of characteristics as an 

innovative supplement to already available models (GANESI, SIMONE) verified in 

practice. 

The first cautious computations show that only in the field of preliminary gas heating via 

a process oriented heat supply on the basis of an adaptive model of actually appearing 

temperature diminution in the gas pressure control devices (that is a compensation of 

the Joule - Thomson effect adapted to actual conditions) with the aid of the method of 

characteristics, over 2 million DM can be saved annually in the German economy on 

the power costs. 
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Besides the application for the temperature control in gas networks, the method of 

characteristics opens up quite new prospects for the design of calibrated control of the 

gas properties as well as for theoretical clarification of certain phenomena of the 

retrograde condensation of natural gases in the high-pressure networks. 

 

 

 

* Devoted to the outstanding Russian academician, the teacher and sincere friend, Prof. Michail Vladimirovitsch Lurje, head of the 

chair for fluid dynamics of the Russian State Gubkin University for Petroleum and Gas   in Moscow, in connection with his 60th 

anniversary. 
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