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Abstract. The purpose of the present paper is to extend the scope of applicability of the
current computer algebra systems at the implementation of one of the popular finite differ-
ence methods for numerical solution of three-dimensional compressible fluid flow problems.
This is shown at the example of an applied problem from the oil and gas industry repre-
senting the task of numerical modelling of hydrodynamic processes in spiral compensators
of percussion-rotary drilling devices.

1 Introduction

At present, computer modelling of various mechanical, physical, or chemical processes contributes
to the technological progress. This modelling often proves to be especially useful at the stage
of a search for the optimal design solutions and reduces the price of the entire process of the
development and design of new technological devices or units.

On the other hand, the development of a computer code for the modelling purpose should not
take too a long time because otherwise the ready device may become antiquated by the time of
its batch production. However, an attempt to speed up the process of the development of a big
computer code is fraught with the introduction of numerous errors in the code.

In this connection, the attempts were undertaken repeatedly at at least partial automation of
the process of the generation of PDE based computer codes. First of all, we would like to mention
the following two early attempts at developing the program packages for the construction and
investigation of numerical methods for solving the partial differential equations (PDEs) of the
mathematical physics in the computer algebra system (CAS) environment. In [17], the REDUCE
3.3 based program package FIDE was presented. This package was designed to automate the
process of numerical solving of PDE systems by means of computer algebra. This package enables
the user to study both approximation and stability of finite difference schemes and to generate a
FORTRAN code, which implements the chosen finite difference method.

The PDEs governing fluid flows (for example, the Navier–Stokes equations for compressible
viscous fluid flow) usually contain some standard operators like the Laplacian, the gradient. One
can at first derive the difference approximations to these operators and then replace with the
difference operators obtained the corresponding differential operators in the system of PDEs. Such
a methodology was implemented in [10] with the aid of the REDUCE system at the example of
the heat equation. This idea was developed further in [18] for automatic generation of conservative
scalar difference schemes for gas dynamics equations in Lagrangian form on curvilinear spatial
computing meshes.

In [23], it was proposed to generate the needed FORTRAN codes for the solution of elliptic
PDEs with the aid of a MACSYMA program [19].

The ideas discussed in [23] were developed significantly in [1], where the viewpoint has been
expressed that the development of problem solving environments (PSEs) is needed. The final goal
of a PSE is the automation of the numerical solution of initial- and boundary-value problems for
PDEs, so that the PSE itself chooses a solution method for user’s task. The SciNapse PSE [1]
appears to be the first such PSE. This system has been implemented in Mathematica and produces
at its output a well documented C or Fortran code.
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The Ctadel system is another example of a PSE that generates efficient codes for climate models
[4, 12, 20]. This is a Prolog based computer aided program implementation tool. The code generator
of Ctadel was successfully applied for the generation of efficient Fortran code for the numerical
weather forecast purpose.

We can identify one more direction in the solution of the problem of computer generation of
executable code: the graphical object oriented modelling. This direction in the development of fast
and reliable code generators is based on using the graphical description techniques like Unified
Modelling Language (UML) and Object Oriented Programming (OOP) to represent the complex
algorithms and data structures [11, 6–9].

There are in industrial applications many fluid mechanics problems, which are intrinsically
three-dimensional. Some examples of such problems may be found in [3, 5]. A feature of these
problems is that they are usually characterized by complex geometry of physical regions. By trans-
forming a physical region to a simple region, one removes the complication of the shape of the
physical region from the problems. Such transformations are carried out by introducing the curvi-
linear coordinate system [16]. In the present paper, we discuss the possibilities of using the computer
algebra systems at various stages of the mathematical formulation and numerical solution of time
dependent three-dimensional fluid flow problems in curvilinear coordinates.

The formulation of the mathematical model of flow process involves several stages:

❒ Derivation of analytical expressions for the metric terms in the governing PDEs in curvilinear
coordinates [17, 15].

❒ Derivation of the formulas for boundary conditions on the curved boundaries of the physical
region.

❒ Derivation of the equation(s) of state.

The implementation of a finite difference method for the discretization of the above formulated
PDEs and boundary conditions also involves several stages:

• Curvilinear grid generation and the check-up of grid orthogonality.
• Derivation of the matrices of Roe’s average values with regard for the chosen equation of state

in the case of using the approximate Riemann solvers.
• Specification of flux limiter functions [12].
• Generation of Fortran or C code implementing the chosen finite-difference method [1, 4, 11,

6–9, 12, 17, 20, 23].

In the above listed stages marked with symbols ❒ and • we have also given the references to
those previously published works, in which some specific stages were implemented with the aid of
computer algebra systems.

The purpose of the present paper is to how how those stages, which were not implemented pre-
viously with the aid of CASs, can successfully be implemented with the aid of CASs Mathematica
and MACSYMA. We will describe this implementation at the example of an applied problem from
the oil and gas industry. This is the problem of numerical modelling of hydrodynamic processes
in spiral compensators of percussion-rotary drilling devices. The percussion-rotary technique is
currently the main technique for the drilling of wells in the sedimentary rocks for the exploratory
purposes and oil and natural gas production. This technique is inefficient at the drilling in hard
crystalline rocks [21, 29]. The percussion-rotary drilling is a combination of the rotary and percus-
sion methods and has the following advantages over the pure rotary drilling:

– higher drilling velocity in moderately hard and hard stone;
– better stability of well direction and
– insignificant wear because of lesser rotation frequency and lesser drilling pressure.

The numerical modelling of hydraulic shocks inside the work volume of a percussion-rotary
drilling hammer (PRDH) was carried out previously with the aid of the method of characteristics
in one-dimensional formulation; a review of relevant works as well as the numerical algorithm taking
into account the possibility of cavities formation may be found in [29]. A detailed description of the
hydrodynamic processes occurring in the PRDH work volume within a single work cycle has been
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presented in [22]. During this cycle, two shock waves arise: the first of them, the strongest one,
impinges onto the piston, which hits the anvil of the hammer, and the second shock propagates
upwards through the spiral compensator in the direction opposite to the motion of the working
liquid, the distilled water, which is pumped into the hammer.

A further increase in the PRDH efficiency is related to an increase in the strength of the shock
wave impinging onto the anvil. But this also leads to an increase in the strength of a shock wave
propagating upwards in the spiral compensator. The main task of this compensator is to maximally
damp the shock for the purpose of avoiding the rupture of the entire PRDH device. Thus, a search
for the ways of optimization of the design of spiral compensators is a challenging problem for the
design of the new PRDHs. The numerical modelling is here a very efficient means because the
manufacturing of the full-scale test samples of new compensators requires considerable expenses
in connection with high requirements for compensator strength.

In the one-dimensional formulation the numerical modelling of time dependent hydrodynamic
processes in spiral compensators was implemented for the first time in the work [22]. The following
two second-order difference schemes were used therein: a scheme of the “cross” type and a TVD
scheme adapted to the barotropic fluid flows. As a result, the optimal configurations of spiral com-
pensators were found in [22], which ensure the best damping effect under the existing technological
constraints for the PRDH dimensions.

The mathematical model of one-dimensional flow does, however, not take into account the effect
of the curvature of the spiral channel walls as well as the possible effects of the shock reflection from
the walls. Therefore, a modelling on the basis of a model of three-dimensional flow of an inviscid
compressible barotropic fluid with regard for friction forces is a more complete mathematical
modelling of shock wave processes in spiral compensators.

We briefly describe in the following both the mathematical model of the 3D fluid flow in the
spiral compensator channel and the numerical method for the discretization of the equations of
this model and show how the above listed stages of the mathematical modelling of a complex
applied problem under consideration were implemented with the aid of CASs Mathematica and
MACSYMA.

2 Governing Equations

The equations governing a three-dimensional nonstationary flow of an inviscid compressible non-
heat-conducting barotropic fluid in the rectangular Cartesian coordinates x, y, z have the following
form [26]

∂ρ

∂t
+∇ · (ρv) = 0, (1)

∂
(
ρ

⇀
v
)

∂t
+∇ · (ρvv) +∇p = ρg − ρ

λ

2D
|v| · v. (2)

Equations (1) and (2) represent the differential forms of writing the conservation laws for the mass
and momentum. In Eqs. (1), (2) ρ is the fluid density; v = (u, v, w) is the vector of fluid velocity,
where u, v, w are the components of the velocity vector along the x-, y-, and z-axis, respectively;
p is the pressure, and g is the vector of acceleration due to gravity (9.81 m/s2) and |v| is the
modulus of the velocity vector, that is |v| = √

u2 + v2 + w2. The term −ρλ|v| ·v/(2D) in equation
(2) takes into account the losses due to wall friction in channel. We have used in the present work
the following relations basing on the experimental data:

D =
B1H1

B1 + H1
, λ =

0.021
D0.3

(3)

for the computation of the effective diameter D and the wall friction number λ [22]. Here B1 and
H1 are the internal dimensions of flow channel (see Fig. 1) in a cross section, which is perpendicular
to the channel walls. The componentwise form of equations (1) and (2) is as follows:

∂U
∂t

+
∂F(U)

∂x
+

∂G(U)
∂y

+
∂H(U)

∂z
= R(U), (4)
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Fig. 1. The rectangular cross section of a
spiral channel.

where

U =




ρ
ρu
ρv
ρw


 , F(U) =




ρu
ρu2 + p

ρuv
ρuw


 , G(U) =




ρv
ρuv

ρv2 + p
ρvw


 , H(U) =




ρw
ρuw
ρvw

ρw2 + p


 ,

R(U) =




0
−λρ|v|u/(2D)
−λρ|v|v/(2D)

−λρ|v|w/(2D)− ρg


 . (5)

Since the spiral channel walls are curved it is more convenient to use the equations of fluid flow
in curvilinear coordinates ξ, η, ζ such that the original region Ω in the space of the Cartesian
coordinates x, y and z is mapped onto a parallelogram Π in the space of curvilinear coordinates.
Assume that there is the corresponding one-to-one mapping

x = x(ξ, η, ζ), y = y(ξ, η, ζ), z = z(ξ, η, ζ), (ξ, η, ζ) ∈ Π. (6)

The flow equations (1)–(2) in curvilinear coordinates ξ,η, and ζ take the following form (Pulliam
and Steger 1980, Vatsa 1987, Vatsa and Wedan 1988):

∂UJ

∂t
+

∂F̂
∂ξ

+
∂Ĝ
∂η

+
∂Ĥ
∂ζ

= JR(U). (7)

Here J is the Jacobian of transformation (6),

J = xξ(yηzζ − yζzη)− yξ(xηzζ − xζzη) + zξ(xηyζ − yηxζ). (8)

xξ, yξ, zξ, xη, yη, zη, xζ , yζ , zζ are the partial derivatives, for example, zη = ∂z(ξ, η, ζ)/∂η, etc.;

F̂ = JξxF + JξyG + JξzH, Ĝ = JηxF + JηyG + JηzH, Ĥ = JζxF + JζyG + JζzH, (9)

where the column vectors F, G, and H are defined by formulas (5).
The metric terms ξx, ξy, . . . , ζz entering (9) may be expressed in terms of the derivatives

xξ, xη, . . . , zζ via the formulas (Pulliam and Steger 1980)

ξx = (yηzζ − yζzη)/J, ξy = (zηxζ − xηzζ)/J, ξz = (xηyζ − yηxζ)/J,

ηx = (zξyζ − yξzζ)/J, ηy = (xξzζ − xζzξ)/J, ηz = (yξxζ − xξyζ)/J, (10)
ζx = (yξzη − zξyη)/J, ζy = (xηzξ − xξzη)/J, ζz = (xξyη − yξxη)/J.

The Jacobian J must be different from zero at (ξ, η, ζ) ∈ Π to ensure the singlevaluedness of
transformation (6).

Applying the methods of analytic geometry it is not difficult to show that the desired mapping
(9) has the following form for the case of a spiral channel:

x =
(
B1η + a− B1

2

)
cos ξ, y = −

(
B1η + a− B1

2

)
sin ξ, z = H̄1ζ + c1ξ − H̄1

2
,

smin ≤ ξ ≤ smax, 0 ≤ η ≤ 1, 0 ≤ ζ ≤ 1. (11)
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The quantity H̄1 entering (11) is related to the vertical size H1 of the hydraulic cross section by
formula H̄1 = H1/ sin α, where α is the angle between the tangent to the spiral midline of the
channel and the positive direction of the Oz-axis, 0 < α < π/2.

Owing to the availability of analytic expressions (11) for the functions x(ξ, η, ζ), y(ξ, η, ζ),
z(ξ, η, ζ) we can obtain the analytic expressions for all metric derivatives ξx, ξy,. . . ,ζz entering the
expressions for the fluxes (9). These metric derivatives were obtained with the aid of symbolic
computations on a desktop computer with the use of the software package Mathematica 4.1. In
particular, the metric derivatives xξ and xη were computed with Mathematica as follows:

x[u_,v_,w_] := (a + B1*v-B1/2)*Cos[u];
xksi = D[x[u,v,w],u]; xeta = D[x[u,v,w], v];

Rule1 = {u→ ξ, v→ η, w→ ζ, B1→ B1, H1→ H1, c1→ c1};
{xksi1, xeta1} = {xksi, xeta}/.Rule1;
Print["xξ= ", TraditionalForm[xksi1], "; xη= ", TraditionalForm[xeta1]];

xξ = − sin(ξ)
(
a + ηB1 − B1

2

)
; xη = cos(ξ)B1

The Jacobian J was then computed symbolically with Mathematica by substituting the found
expressions for the metric derivatives into formula (8) and was found to have the following form:

J = B1H̄1[a + B1(η − 0.5)]. (12)

The factor a + B1(η − 0.5) satisfies the inequalities:

a− 0.5B1 ≤ a + B1(η − 0.5) ≤ a + 0.5B1. (13)

By virtue of the inequalities a > B/2 > B1/2 it follows from (13) that always J > 0. Thus, the
transformation (6), (11) is always single-valued.

3 Equation of State

To close the system of the Euler equations (1), (2) it is desirable to use a fluid equation of state,
which takes into account a rectangular cross section of the pipe and the elastic deformations of
the metal pipe walls when a shock wave passes periodically through the liquid in the pipe. Such
an equation of state was derived by Jenkner [14, 24]. Prior to using this equation of state in our
computations we have decided to check the Jenkner’s derivations. For this purpose we have used
the CAS MACSYMA [19].

For the pressure wave velocity a in any pipe cross section the following relation holds [13]:

Eq 1 1: a=sqrt((1/rho)/((1/rho)∗diff(rho,p)+ (1/\a)∗diff(\a(p),p)))

a =

√√√√√
1

ρ

(
d

dp (A(p))

A +
dρ
dp

ρ

)

where A(p) is the pipe cross section area, ρ is the fluid density. For an infinitely rigid pipe wall
dA(p)/dp = 0, and in this case the sound velocity in any cross section of the pipe coincides with
the sound velocity in fluid:

Eq 1 1 1: subst(0, a(p), Eq 1 1)

a =

√
1
dρ
dp

If one takes into account the elasticity of pipe walls then one can assume with regard for the
classical elasticity theory that the volume contraction of the fluid element (1/ρ)(dρ/dp) may be
replaced with the aid of formula

(1ρ)(dρ/dp) = 1/K, (14)
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where K is the fluid bulk modulus. We can then write the formula for sound velocity as Eq 1 2:

ratsubst(1/\k,(1/rho)∗diff(rho,p),Eq 1 1 1)

a =

√
K

ρ
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Fig. 2. The loading on a pipe with square cross section and its deformation: (a) the loading; (b) the cross
section deformation; (c) the bar clamped at its ends.

A relative distension of the pipe cross section (1/A)(dA(p)/dp) takes various values depending
on a specific geometric shape of the pipe cross section. We consider the case when the cross section
is a square with the side length D. Let us take a pipe element of length dl and let δp be the internal
fluid pressure. Due to the axial and diagonal symmetry the distance between the neighboring points
C (Fig. 1, a) will be the same and equal to D + δD. The deformation pattern of a square frame
under the internal pressure is obtained as shown in Fig. 1, b. The total increase dA in the area is
composed as a sum of the distension δAN due to normal forces N and the flexional distension δAB .
The area increment can then be computed as a consequence of the distension of a bar clamped at
its ends, but extensible in the direction along the bar, see Fig. 1, c.
The distension due to normal forces:

simp: false $
Eq1 3 1: \delta∗\d=sigma[\n]∗\d/\e

∆D =
σN

E

Here E is the Young’s module of the wall material, σN is the normal stress. With N = dp dl D/2
and σN = N/(e dl) = dpD/(2e), where e is the wall thickness, we have:

simp: false $
Eq1 3 2: \delta∗\d=dp∗\d̂ 2/(2∗e∗\e)

∆D =
dpD2

2eE

The total area increase for the entire frame is obviously

Eq1 4 1: delta∗\a[\n]=4∗((\d∗\delta∗\d/2+(\delta∗\d̂ 2/4))

δAN = 4
(

D ∆D

2
+

(∆D)2

4

)

Neglecting the small term of the order (∆D)2 we obtain:

Eq1 4 2: delta∗\a[\n]=2∗\d∗\delta∗\d

δAN = 2D ∆D

or with regard for equation Eq 1 3 2
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Eq1 4 3: delta∗\a[\n]=dp∗\d̂ 3/(e\e)
δAN =

dpD3

eE
.

The area distension δAB is found as an area between the straight axis and the flexion line of the
bar clamped at its both ends under a continuous loading δp δl. The flexion line has the form [14]

Eq1 4 4: y=(dp∗dl∗\d̂ 4/(24∗\e∗\j))∗((x/\d)- 2∗(x̂ 3/(\d̂ 3))+(x̂ 4/(\d̂ 4)))

y =
dp dl D4

(
x
D − 2x3

D3 + x4

D4

)

24E J
,

where J is the inertia moment. After the integration we obtain for the bar:

simp: true$
Eq1 4 5: delta∗\a[\b,1]= ’integrate(rhs(Eq 1 4 4),x,0,\d)

δAB,1 =
dl dp

(∫ D

0

(
x
D − 2x3

D3 + x4

D4

)
dx

)
D4

24E J
.

Eq1 4 6: Eq 1 4 5, integrate

δAB,1 =
dl dpD5

120E J
.

Jenkner [14] had obtained the factor 720 in the denominator of the formula for δAB,1. With

Eq1 4 7: \j=dl∗ê 3/12

J =
dl e3

12
this implies

Eq1 5 1: subst(rhs(Eq 1 4 7),\j,Eq 1 4 6)

δAB,1 =
dpD5

10e3E
.

A comparison of δAN and δAB yields

Eq1 6 1: rhs(Eq 1 6 1)/rhs(Eq 1 4 3)
D2

10e2

This means that the area increment due to flexional distension is much predominant, so that for
pipes with D/e > 20 one can neglect the contribution of δAN to the total area distension. From
Eq 1 5 1 and the area A = D2 one can find the relative area distension:

Eq1 7 1: (1/\a)∗’diff(\a(p),p)= \d̂ 3/(10∗ê 3∗\e)
d
dp (A(p))

A
=

D3

10e3E
.

This results in the following formula for sound velocity in a pipe with square cross section:

Eq1 8 1: subst(\d̂ 3/(10∗ê 3 ∗ \e), (1/\a)∗diff(\a(p),p),Eq 1 1)

a =

√√√√√
1

ρ

(
D3

10e3E +
dρ
dp

ρ

) .

Eq1 8 2: subst((1/\k),(1/rho)∗diff(rho,p),Eq 1 8 1)

a =

√
1

ρ
(

1
K + D3

10e3E

) .
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Since dp/dρ = a2, the integration

p =
∫ ρ

ρ0

a2dρ

obviously yields the following formula for the equation of state in the case of a square cross section,
where ρ0 is the initial fluid density at t = 0:

p =

(
1

1
K + D3

10e3E

)
ln

ρ

ρ0
.

Jenkner [14] has extended the above derivation for the case of a rectangular cross section, and the
final equation of state, with regard for our correction found above with the aid of CAS MACSYMA,
has the form

p = Keff · ln(ρ/ρ0) (15)

with

Keff =
(

1
EF

+
(B/H)4R(β)
10(d/H)3EM

)−1

, (16)

where EF and EM are the Young’s modules of elasticity for fluid and wall material, respectively,
d is the wall thickness, and B or H are the external dimensions of the channel cross section (see
Fig. 1). The quantity R(β) is the so-called rectangular factor:

R(β) =
1
2
(6− 5β) +

1
2

(
H

B

)5
(

6− 5β

(
B

H

)2
)

, β = 1− H

B
+

(
H

B

)2

. (17)

Note that Jenkner [14] has derived the factor Keff by hand in the form

Keff =
(

1
EF

+
(B/H)4R(β)
15(d/H)3EM

)−1

.

We have used the equation of state (15) with formula (16) for Keff in our three-dimensional
computations of fluid flow in a spiral channel.

4 Boundary Conditions

We now show the efficiency of using the CAS Mathematica while obtaining the analytic expressions
for the boundary conditions on the spiral channel walls in curvilinear coordinates. We will consider
for the purpose of brevity only the case of the lower channel wall. The value ζ = 0 of the curvilinear
coordinate ζ in (11) corresponds to this wall. Thus, the parametric equations of the lower wall are
as follows:

x =
(

B1η + a− B1

2

)
cos ξ, y = −

(
B1η + a− B1

2

)
sin ξ, z = c1ξ − H̄1

2
, (18)

smin ≤ ξ ≤ smax, 0 ≤ η ≤ 1.

Let us find the form of the boundary condition vn = 0 on the lower channel wall. We make use of
the formula vn = v ·n, where n is the unit normal vector to the lower wall. According to (18) the
equations for the lower wall have the form: x = x(ξ, η), y = y(ξ, η), z = z(ξ). The unit normal to
the surface (18) is computed by formula [2]

n =
∂(y,z)
∂(ξ,η) i + ∂(z,x)

∂(ξ,η)j + ∂(x,y)
∂(ξ,η)k√[

∂(y,z)
∂(ξ,η)

]2

+
[

∂(z,x)
∂(ξ,η)

]2

+
[

∂(x,y)
∂(ξ,η)

]2
,

where
∂(y, z)
∂(ξ, η)

=

∣∣∣∣∣
∂y
∂ξ

∂z
∂ξ

∂y
∂η

∂z
∂η

∣∣∣∣∣ ,
∂(z, x)
∂(ξ, η)

=

∣∣∣∣∣
∂z
∂ξ

∂x
∂ξ

∂z
∂η

∂x
∂η

∣∣∣∣∣ ,
∂(x, y)
∂(ξ, η)

=

∣∣∣∣∣
∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η

∣∣∣∣∣ . (19)

All determinants in (19) were computed symbolically. In particular, the determinant ∂(y, z)/∂(ξ, η)
was computed with the aid of Mathematica as follows:
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TraditionalForm[Det[{{D[y[u,v,w], u], D[z[u,v,w], u]}, {D[y[u,v,w],v],
D[z[u,v,w], v]}}]/.Rule1]

sin(ξ)B1c1

Thus,

∂(y, z)
∂(ξ, η)

= B1c1 sin ξ,
∂(z, x)
∂(ξ, η)

= B1c1 cos ξ,
∂(x, y)
∂(ξ, η)

= B1[a + B1(η − 0.5)];
√[

∂(y, z)
∂(ξ, η)

]2

+
[
∂(z, x)
∂(ξ, η)

]2

+
[
∂(x, y)
∂(ξ, η)

]2

=
1
2
B1

√
(B1 − 2a− 2B1η)2 + 4c2

1.

From the condition vn = 0 on the lower wall we obtain the equation:

uc1 sin ξ + vc1 cos ξ + w[a + B1(η − 0.5)] = 0.

The boundary condition ∂p/∂n = 0 on the lower wall is derived with the aid of the formula
∂p/∂n = ∇p · n and leads to the following equality:

∂p

∂x
c1 sin ξ +

∂p

∂y
c1 cos ξ +

∂p

∂z
· [a + B1(η − 0.5)] = 0.

5 The Roe’s Method

The Roe’s method has gained a widespread acceptance as an efficient method for the solution of
fluid dynamics problems [25]. It was implemented by us on a curvilinear spatial curvilinear grid
of quadrilateral cells. Using the analytic formulas (??) it is easy to generate numerically this grid.
For this purpose we at first construct an uniform grid in the parallelepiped Π defined as the region
Π = {(ξ, η, ζ)| smin ≤ ξ ≤ smax, 0 ≤ η ≤ 1, 0 ≤ ζ ≤ 1}. Let

ξi = smin+(i−1)∆ξ, i = 1, . . . , N1; ηj = (j−1)∆η, j = 1, . . . , N2; ζk = (k−1)∆ζ, k = 1, . . . , N3,

where N1 > 1, N2 > 1, and N3 > 1 are the user-specified numbers of the grid nodes in the
directions of the axes ξ, η, ζ, respectively; ∆ξ, ∆η, ∆ζ are the uniform grid steps along the axes ξ,
η, ζ, respectively; ∆ξ = (smax − smin)/(N1 − 1), ∆η = 1/(N2 − 1), ∆ζ = 1/(N3 − 1). An arbitrary
grid node in Π is the point with coordinates (ξi, ηj, ζk). In the space of the physical coordinates
(x, y, z) the node (xijk, yijk, zijk) corresponds to this point, where

xijk =
(

B1ηj + a− B1

2

)
cos ξi , yijk = −

(
B1ηj + a− B1

2

)
sin ξi , zijk = H̄1ζk+c1ξi− H̄1

2
. (20)

It is easy to show that the generated curvilinear grid is orthogonal. The conditions for the orthogo-
nality of different families of grid lines to one another may indeed be written as xξxη + yξyη + zξzη

= 0, xξxζ + yξyζ + zξzζ = 0, xηxζ + yηyζ + zηzζ = 0. We have checked these conditions with
Mathematica by substituting into them the relations for the metric derivatives, which were also
computed with Mathematica as this was demonstrated above. We have found in this way that all
the orthogonality relations are satisfied.

Fig. 3 gives an idea of the curvilinear grid computed by formulas (20). It can be seen from this
figure that the presented spiral compensator has 12 rolls, so that the total angle of the turn of the
the vector tangent to the external vertical wall amounts to 360◦ ·12 = 4320◦. Note that the largest
angle of the tangent vector turn, which we have found in the literature, amounts to only 540◦ in
the two-dimensional computations reported in [27].

Since the number of rolls in Fig. 3 is 12, about 13 grid nodes along the ξ-axis lie within each
single roll. The obtained grid on the internal surface may be seen to be insufficiently smooth,
so that it is desirable to take a larger number than 161 of nodes along the ξ-axis for the given
compensator.
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Fig. 3. The curvilinear grid on the inter-
nal walls of a spiral channel for N1 = 161,
N2 = 12, N3 = 12. The dimensions are
given in meters.

At the extension of the Roe’s scheme for the three-dimensional case we will need the expansions:

Â = R1Λ1R−1
1 ; B̂ = R2Λ2R−1

2 ; Ĉ = R3Λ3R−1
3 , (21)

where Λ1, Λ2, and Λ3 are the diagonal matrices whose principal diagonals are occupied by the
eigenvalues of matrices Â, B̂, and Ĉ, respectively; R1, R2, and R3 are certain nonsingular matrices.

We will assume that the components of the vector Un
ijk are computed at the cell center in the

space of the (ξ, η, ζ), that is at point with the coordinates (ξi+1/2, ηj+1/2, ζk+1/2), where

ξi+1/2 = smin + (i− 0.5)∆ξ, i = 1, . . . , N1; ηj+1/2 = (j − 0.5)∆η, j = 1, . . . , N2 − 1;
ζk+1/2 = (k − 0.5)∆ζ, k = 1, . . . , N3 − 1.

The Roe’s scheme as applied to system (7) may be written as
(
Un+1

ijk −Un
ijk

)
Jijk

τ
+

Φn
i+1/2,j,k−Φn

i−1/2,j,k

∆ξ
+

Ψn
i,j+1/2,k−Ψn

i,j−1/2,k

∆η

+
Γn

i,j,k+1/2− Γn
i,j,k−1/2

∆ζ
= JijkRn

ijk, (22)

where the fluxes Φn
i±1/2,j,k, Ψn

i,j±1/2,k, Γn
i,j,k±1/2 are computed by formulas:

Φn
i+1/2,j,k =

1
2

[
F̂

(
Un

ijk

)
+ F̂

(
Un

i+1,j,k

)]− 1
2

(
R1ψ (Λ1)R−1

1

) (
Ūi+1/2

) (
Un

i+1,j,k −Un
ijk

)
, (23)

Ψn
i,j+1/2,k =

1
2

[
Ĝ

(
Un

ijk

)
+ Ĝ

(
Un

i,j+1,k

)]− 1
2

(
R2ψ (Λ2)R−1

2

) (
Ūj+1/2

) (
Un

i,j+1,k −Un
ijk

)
, (24)

Γn
i,j,k+1/2 =

1
2

[
Ĥ

(
Un

ijk

)
+ Ĥ

(
Un

i,j,k+1

)]− 1
2

(
R3ψ (Λ3)R−1

3

) (
Ūk+1/2

) (
Un

i,j,k+1 −Un
ijk

)
. (25)

In (23) — (25)

ψ(Λm) = diag
(
ψ

(
λ

(m)
1

)
, ψ

(
λ

(m)
2

)
, ψ

(
λ

(m)
3

)
, ψ

(
λ

(m)
4

))
, m = 1, 2, 3. (26)

and

ψ(z) =
{ |z|, |z| ≥ δ

z2+δ2

2δ , |z| < δ
, (27)
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δ is a user-specified positive constant. At z = 0 we obtain from (27): ψ(0) = 0.5δ. Thus, owing to
the introduction of the function (27) the dissipativity of the difference scheme is ensured also in
those flow subregions, where some of the eigenvalues λ

(m)
µ change their signs.

The quantities Ūi+1/2, Ūj+1/2, and Ūk+1/2 in formulas (23), (24), and (25), respectively, are
the Roe’s averages. The Roe averages representing the components of the vector Ūi+1/2 entering
equations (23) have the following form for the case of the equation of state (15):

ūi+1/2 =
√

ρijkuijk+
√

ρi+1,j,kui+1,j,k√
ρijk+

√
ρi+1,j,k

; v̄i+1/2 =
√

ρijkvijk+
√

ρi+1,j,kvi+1,j,k√
ρijk+

√
ρi+1,j,k

;

w̄i+1/2 =
√

ρijkwijk+
√

ρi+1,j,kwi+1,j,k√
ρijk+

√
ρi+1,j,k

; c̄i+1/2 =





(
pi+1,j,k−pi,j,k

ρi+1,j,k−ρi,j,k

)0.5

, |ρi+1,j,k − ρi,j,k| > 10−12

1√
ρi,j,k

, |ρi+1,j,k − ρi,j,k| ≤ 10−12
;

ρ̄i+1/2 = √
ρi,j,kρi+1,j,k.

(28)
We have omitted for brevity the superscript n by the components of the vector Ūi+1/2 in formulas

(28). The expressions for the entries of matrix ¯̂A also contain the quantities û = ξxu + ξyv, v̂ =
ηxu+ηyv, and ŵ = ζxu+ ζyv + ζzw. Following [28] we computed the averages ¯̂ui+1/2,¯̂vi+1/2, ¯̂wi+1/2

in matrix ¯̂A by formulas:

¯̂ui+1/2 = ξx,i+1/2ūi+1/2 + ξy,i+1/2v̄i+1/2; ¯̂vi+1/2 = ηx,i+1/2ūi+1/2 + ηy,i+1/2v̄i+1/2;
¯̂wi+1/2 = ζx,i+1/2ūi+1/2 + ζy,i+1/2v̄i+1/2 + ζz,i+1/2w̄i+1/2 .

(29)

The quantities ξx,i+1/2, ξy,i+1/2 in (29) were computed as the arithmetic means:

ξx,i+1/2 = (1/2)[(ξx)ijk + (ξx)i+1,j,k; ξy,i+1/2 = (1/2)[(ξy)ijk + (ξy)i+1,j,k]. (30)

The expressions for the matrices Rν , ν = 1, 2, 3, were found by us with the aid of CAS Math-
ematica. We will present the corresponding procedure at the example of matrix Â. We at first
present the expressions for matrices A, B, and C entering formulas

A(U) =
∂F(U)

∂U
, B(U) =

∂G(U)
∂U

, C(U) =
∂H(U)

∂U
. (31)

A =




0 1 0 0
c2 − u2 2u 0 0
−uv v u 0
−uw w 0 u


 , B =




0 0 1 0
−uv v u 0
c2 − v2 0 2v 0
−vw 0 w v


 , C =




0 0 0 1
−uw w 0 u
−vw 0 w v
c2 − w2 0 0 2w




In the expansion
Â = J (ξxA + ξyB) = R1Λ1R−1

1 (32)

Λ1 is a diagonal matrix whose diagonal entries are the eigenvalues of matrix Â, and the multiple
eigenvalues are repeated on the diagonal in accordance with their multiplicity. Let Xk be the right
eigenvector of matrix Â, that is Xk satisfies the equation ÂkXk = λkXk, k = 1, ..., 4. Then the
columns of the matrix R1 in the expansion (32) are known to be composed of the coordinates of
the right eigenvectors of matrix Â, that is R1 = (X1|X2|X3|X 4). The vertical bars in this formula
separate one column from another. Let similarly Yk be the left eigenvector of matrix Â, which
corresponds to the eigenvalue λk, that is Yk satisfies the equation YkÂ = λkYk , k = 1, ..., 4.
The lines of matrix R−1

1 in expansion (32) then consist of the coordinates of the left eigenvectors
of matrix Â, that is

R−1
1 =

(
Y1
Y2

Y3
Y4

)
,

where the horizontal bars separate one line from another.
For the computation of matrices R1 and Λ1 in the expansion of matrix Â (32) one can use the

following built-in functions of the software system Mathematica 4.1, respectively: Eigenvalues[A]
and Transpose[Eigenvectors[A]]. There is also the built-in function JordanDecomposition[A],
which outputs simultaneously R1 and Λ1. Therefore, we have used this function in view of its
convenience:
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[R1, Λ1]= JordanDecomposition[As],

where As ≡ Â, and

Λ1 = diag(λ(1)
1 , λ

(1)
2 , λ

(1)
3 , λ

(1)
4 ), λ

(1)
1 = λ

(1)
2 = Jû, λ

(1)
3 = λ

(1)
1 − Jc|∇ξ| , λ

(1)
4 = λ

(1)
1 + Jc|∇ξ| ,

|∇ξ| =
√

ξ2
x + ξ2

y , û = ξxu + ξyv.

As a result, the following expression for matrix R̃1 was found:

R̃1 =




0 0 1
w

1
w

0 − ξy

ξx

−cξx+u|∇ξ|
w|∇ξ|

cξx+u|∇ξ|
w|∇ξ|

0 1 −cξy+v|∇ξ|
w|∇ξ|

cξy+v|∇ξ|
w|∇ξ|

1 0 1 1


 . (33)

While deriving formula (33) we have used the fact that the derivative ξz = 0 according to (10).
This has resulted in a significant simplification of the expressions for the entries of matrix R̃1.

It can be seen from (33) that there is the velocity component w in the denominators of some
entries. Thus, a singularity arises in these entries at w = 0. On the other hand it is well known
that the matrix R̃1 in the Jordan decomposition is determined non-uniquely. Let indeed D1 be a
nonsingular diagonal matrix, and let R1 = R̃1D1. Consider the expression for R1Λ1R−1

1 :

R1Λ1R−1
1 = R̃1D1Λ1

(
R̃1D1

)−1

= R̃1D1Λ1D−1
1 R̃−1

1 = R̃1Λ1R̃−1
1 = Â.

Thus, we can try to choose such a diagonal matrix D1, which eliminates the singularity in the entries
of matrix (33). This requirement is met by the following matrix D1: D1 = diag(c, cξx, w, w). As a
result we obtain:

R1 = R̃1D1 =




0 0 1 1
0 −cξy −cξ̂x + u cξ̂x + u

0 cξx −cξ̂y + v cξ̂y + v
c 0 w w


 , R−1

1 =




−w
c 0 0 1

c
uξy−vξx

c|∇ξ|2
−ξy

c|∇ξ|2
ξx

c|∇ξ|2 0
1
2

(
1 + ξ̂xu+ξ̂yv

c

)
− ξ̂x

2c − ξ̂y

2c 0
1
2

(
1− ξ̂xu+ξ̂yv

c

)
ξ̂x

2c
ξ̂y

2c 0




, (34)

where ξ̂x = ξx/|∇ξ|, ξ̂y = ξy/|∇ξ|. Note that Det(R1) = −2c3|∇ξ| < 0, thus, the matrix R1 is
nonsingular. The expressions for the matrices R2, R−1

2 , R3, R−1
3 were found in a similar way with

the aid of CAS Mathematica and are not presented here for the purpose of brevity.
It is to be noted that the Roe’s fluxes (23), (24), and (25) also involve the products Rνψ(Λν)R−1

ν ,
ν = 1, 2, 3. The computation of these products by hand would be a very tedious and error prone
task, so that we have computed them with Mathematica. The expressions for the entries of matrices
Rνψ(Λν)R−1

ν were exported from Mathematica to a file in Fortran form. These ready Fortran lines
were then inserted into three subroutines for the computation of the Roe’s fluxes.

6 Numerical results

The results of numerical computations presented in Fig. 4 were obtained for the case of a discon-
tinuous pressure function at the lower compensator inlet, which were periodic in time with the
frequency of pressure oscillations f = 25 Hz. The mean pressure in the outlet compensator section
was computed as the arithmetic mean of the pressure values at cell centers in this section. The
pictures of the local fluid velocity vectors inside the compensator obtained for different moments of
time show that the shock wave propagating upwards in the compensator pushes the liquid upwards
in the direction opposite to the direction of liquid pumping in the PRDH (see Fig. 4, a).

An analysis of the pictures of pressure and density contours in different sections along the
longitudinal axis of the spiral channel has not revealed any phenomena of the reflection or diffraction
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Fig. 4. The results of a three-dimensional computation of fluid flow in a spiral compensator at t = 0.05996
sec.: (a) the vector field plot; (b) the mean pressure value as a function of time at the outlet section of the
compensator; the dotted line is the result of one-dimensional computation by a TVD scheme from [22].

of shock waves. This is related, in particular, to the fact that the walls of the spiral channel under
consideration have a constant curvature along any of the ξ, η or ζ directions.

The results of three-dimensional numerical computations carried out for the cases of a discon-
tinuous and smooth boundary condition for the pressure at the lower inlet of the compensator
show that at the consideration of the three-dimensional flow character the effect of the damping
of shock waves during their motion upwards in the compensator proves to be somewhat stronger
than in the computations based on the one-dimensional model (see Fig. 4, b). It has been shown
that for a further enhancement of the damping of shock waves in the compensator it is desirable
to ensure an additional smoothing of the discontinuous pressure profile at the lower inlet of the
compensator. This may be achieved by mounting an additional valve supported by a spring, whose
strength must be adjusted.

Conclusion

We have shown above how the computer algebra systems can be used at various stages of both the
formulation of the mathematical model describing a complex fluid flow process and the derivation
of the formulas necessary to implement a specific finite-difference method on a curvilinear spatial
grid. Our estimates show that we have saved at least one month of work of one person in comparison
with the case of the implementation of all stages of mathematical modelling and computer code
writing by hand.
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