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Abstract

We present two 4nite di5erence methods for numerical modelling of nonstationary compressible 6uid 6ows
in a spiral channel with rectangular cross section. One of these methods is an explicit TVD scheme. Another
scheme uses splitting in terms of physical processes and an implicit approximation of the friction term.
The implemented numerical methods serve not only for computation of the damping of pressure jumps and
evaluation of pressure compensators in percussion–rotary drilling devices but are also of great methodical and
practical importance for the treatment of such 6ow problems.
c© 2002 Published by The Japan Society of Fluid Mechanics and Elsevier Science B.V. All rights reserved.
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1. Introduction

Percussion drilling is the oldest technique for the drilling of wells. It has a low drilling velocity
and is used at present only in particular cases. Since the middle of the 19th century, rotary drilling
had been introduced in practice, which had undergone many improvements since then. At present, the
percussion–rotary technique of well drilling for exploration drilling and oil and natural gas production
is the predominant technique of drilling. The percussion–rotary drilling is a combination of the rotary
and percussion methods and has the following advantages over the pure rotary drilling:

• higher drilling velocity in moderately hard and hard stone;
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• better stability of well direction and
• insigni4cant wear because of lesser rotation frequency and lesser drilling pressure.
In the next section we explain how a hydraulic drilling hammer works. One of the features of

the 6uid 6ow processes occurring within this device is the formation of shock waves. The pressure
behind the shock wave fronts in the hydraulic drilling hammer may take very large values. On
the one hand, the shock eEciency of the drilling hammer can be increased by an eEcient use of
such shock waves. On the other hand, the shocks may lead to the destruction of the drilling de-
vice under unfavourable hydraulic conditions. A design goal of the drilling technology is to reduce
the strength of shocks propagating in the direction opposite to 6uid 6ow by mounting the appro-
priate pressure compensators, and to maximally use the shocks in the direction of anvil and drill
bit for the drilling process. For an optimal design and scaling of such pressure compensators, the
mathematical modelling of nonstationary 6ow processes in spiral compensators is of great practi-
cal importance. Despite this fact, there were until now no attempts of modelling the 6ow in the
channel on the basis of approximate numerical solution of partial di5erential equations of 6uid
mechanics.
The choice of the mathematical model for the solution of a speci4c 6uid 6ow problem is strongly

a5ected by the values of the 6uid Mach numbers, which are typical of the 6uid 6ow problem under
consideration. In the case of 6uid 6ow in spiral compensators, the typical Mach number values do
not exceed 0.03. Therefore, one might think that the model of inviscid incompressible 6uid would
be more eEcient for the numerical modelling of such 6uid 6ows. It is, however, not clear how one
can perform a mathematically correct modelling of the propagation of nonstationary hydraulic jumps
within the incompressible 6uid model.
Jacob (1977), SwaEeld and Boldy (1993) and Zhao (1998) considered the numerical modelling of

nonstationary 6uid 6ow processes in percussion–rotary drills. Such 6ows were modelled by SwaEeld
and Boldy (1993) and Zhao (1998) in one-dimensional approximation with the aid of the method
of characteristics.
In connection with the foregoing, we base our numerical modelling of 6uid 6ow processes in

spiral compensators on the inviscid compressible 6uid model. As a working liquid, distilled water
is used in percussion–rotary drilling devices. As was shown, for example, by SwaEeld and Boldy
(1993), the barotropic 6uid model describes satisfactorily the water behaviour under the pressures
typical of percussion–rotary drills. In this connection, we use in the present work the mathemati-
cal model of a barotropic compressible inviscid 6uid for modelling of the 6ow processes in spiral
compensators of the percussion–rotary drilling devices. Owing to the use of the barotropic 6uid
assumption, this mathematical model involves in the one-dimensional case only two partial dif-
ferential equations: the continuity equation and the momentum equation. At the same time, the
well-known Euler equations for 6ows of ideal compressible 6uids involve three equations (the 4rst
two equations are the continuity and momentum equations, and the third equation is the energy
equation).
It is desirable to carry out the mathematical description of nonstationary 6uid 6ow in a spiral

channel with rectangular cross section with regard to curved walls, which cause a complex prop-
agation and re6ection of shock waves as well as centrifugal forces, by using a three-dimensional
model. For the development and analysis of such a complex model, big research work as well as
computer time expenses are needed. In this connection, it is advisable to reduce at the 4rst stage
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the investigation of 6uid 6ow in a spiral channel with regard to important model parameters to a
one-dimensional 6ow problem.
One can use the method of characteristics as well as the 4nite di5erence methods for numerical

modelling of such a one-dimensional nonstationary 6ow in a rectangular channel. With regard to a
subsequent generalization of the one-dimensional computational model for the case of a two- and
three-dimensional 6ow the present authors have decided to use the 4nite di5erence method. Although
the method of characteristics is well suited for the description of one-dimensional pressure shocks,
it has not gained widespread acceptance at the numerical modelling of two- and three-dimensional
6uid dynamics problems because of many types of possible interactions and singularities arising at
the intersection of characteristic surfaces (Roache, 1976).
We present two 4nite di5erence methods for the numerical solution of the problem of barotropic

6uid 6ow in spiral compensator. Despite the fact that we use the barotropic 6uid model, the solution
of the task under consideration has proved suEciently laborious already in the one-dimensional case.
One of the reasons for this is the need to perform several thousands of time steps in order to obtain
reliable predictions of the pressure behaviour at the upper outlet of the spiral compensator. Another
diEculty is caused by the friction term in the momentum equation. It turns out that this source term
is a moderately sti5 source term, which may lead to the overshoots in the numerical solution behind
the shock wave fronts when a TVD scheme is used. We show how the free parameters available in
the TVD scheme should be chosen in order to eliminate this undesirable e5ect.
The paper is organized as follows. In Section 2 we describe in detail the physical processes,

which take place in the hydraulic drilling hammer during its single working cycle. In Section 3 we
obtain the constraints for geometric parameters of the spiral compensator with regard to technological
design requirements. In Section 4 we present the governing equations for one-dimensional barotropic
compressible 6uid 6ow in the presence of 6uid friction on the channel walls. In Section 5 we present
two numerical schemes and discuss the diEculties related to the dispersion e5ect of the friction term.
In Section 6 we present the numerical results on the validation of both di5erence methods and then
apply the numerical methods for the modelling of 6ow processes in actual spiral compensators. In
Section 7 we formulate the conclusions.

2. Process description

The hydraulic drilling hammer (Fig. 1) consists of the shock piston (1), anvil (2) and drill bit
(3) as well as a valve (4) with a spring (5).
The 6uid enters from above via the valve (4), which moves depending on the volume rate against

the spring strength downwards, and then the 6uid 6ows through the shock piston (1), which has a
larger frontal surface at the lower 6uid outlet than at the inlet, into the space I via the channel in
the anvil.
Since the lower frontal surface of the shock piston (1) is larger than its upper frontal surface, a

larger pressure develops on the lower frontal surface than on the upper frontal surface of the piston.
Because of this di5erence in pressures the shock piston (1) moves upwards and 4nally leads to a
sudden interruption of 6ow when its upper frontal surface encounters the valve (4). This results in
a pressure shock (also called shock wave), which accelerates the valve (4) motion as well as the
downward motion of shock piston (1). Then it again frees, however, the 6ow at the lower dead
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Fig. 1. The percussion–rotary drilling device.

point of the valve (4). The piston (1) hits due to its inertia the anvil (2), and the above process
repeats again.
When the valve (4) is closed the shock wave forms above the valve, which then propagates in

the spiral compensator (shown in Fig. 2) upwards. After the shock wave already damped in the
spiral compensator has left the spiral compensator it propagates further upwards in a pipeline and
enters a reservoir which is used as a pressure accumulator of the pump. Thus, the shock wave
propagates in the spiral compensator in the direction opposite to the 6uid 6ow. The purpose of the
spiral compensator is to damp the periodical shock waves, which could destruct both the drilling
device and the pipeline supplying the 6uid to the percussion–rotary drill.
Fig. 2 shows a typical actual spiral compensator of the drilling unit; the compensator diameter is

4 3
4 in, and the drilling unit produces a borehole 6 in in diameter.
We now explain the way in which the 6uid 6ows through the drilling device. Inside the drilling

hammer the 6uid 6ows downwards. The drill bit (3) is supplied with inclined nozzles through which
the 6uid leaves the drilling hammer and then 6ows, together with stone crumb produced as a result
of drilling, upwards. The inclined positioning of the nozzles in the drill bit ensures that the drill bit
(3) turns by a certain angle (percussion–rotary drilling) after each impact of the piston (1) against
the anvil (2). Due to the high frequency of the impacts the mixture of 6uid and stone crumb 6ows
rather continuously upwards (6). The path of the 6uid (which subsequently carries the crumb) is
shown in Fig. 1 by the dashed lines supplied with arrows.
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Fig. 2. Spiral compensator.

3. Geometrical constraints

As we will see in this section the nondimensionalized equations (20) for 6uid 6ow in a spiral
channel involve the length L of the channel (it enters both the friction term and the term taking into
account the gravity force e5ect). Therefore, the channel length a5ects directly the damping of shock
waves in the process of their propagation along the channel. This e5ect can be quite signi4cant if
the channel length is suEciently large. For example, we have conducted a number of numerical
experiments for the cases in which the length of a hypothetical spiral channel exceeded the length
of the channel of an actual spiral compensator by a factor from two to four. As a result, we were
able to reduce the 6uid pressure amplitude at the upper outlet of the compensator by a factor of
about two in comparison with the pressure amplitude at the lower inlet of the spiral compensator.
But since we are going to investigate the e5ects of the damping of pressure surges in actual

compensators, we must take into account the length L of these compensators at the numerical mod-
elling. Therefore, before proceeding to the presentation of the 6uid mechanics equations governing
the one-dimensional 6uid 6ow in spiral channel we at 4rst derive the needed formula for the length
L of the spiral channel of actual compensator.
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Fig. 3. The rectangular cross section of a spiral channel.

Let us consider a spiral, which runs spatially on the surface of a circular cylinder. The parameter
equations of this line are as follows (Bushgens, 1940; Blaschke, 1950):

x0(s) = a cos s; y0(s) =−a sin s; z0(s) = c1s; 06 s6 smax; (1)

where s is the parameter, a is the radius of the cylinder curve and c1 is a coeEcient, which will be
de4ned precisely below in this section.
The minus sign appears in the expression for y0(s) in (1) because the spiral of actual compensator

runs on the cylinder surface in clockwise manner from bottom to top, see Fig. 2.
At all points of spiral, the curvature and torsion are constant. The length of a piece of spiral

between two points lying one over the other is called a turn, and the vertical distance between them
is called the 6ank pitch.
We will consider in the following Eqs. (1) as the equations for the central line or the axis of

the spiral channel, that is the line which is a locus of the geometric centres of the rectangular cross
sections obtained in the planes s= const.
The existing designs of spiral compensators have a number of constraints for their geometric

dimensions:
(i) the height zmax of the cylinder on whose surface the central line (1) of the spiral channel lies

does not exceed 0:9 m and lies within the range 0:4 m6 zmax6 0:9 m;
(ii) the external radius a + B does not exceed 0:2 m, where B is the external horizontal size of

the channel cross section (see Fig. 3);
(iii) the thickness of the spiral channel wall is of the order 0:01 m.
Within the framework of existing limitations for the dimensions of spiral compensators it is

possible to vary the spiral channel length L at the expense of the speci4cation of a 6ank pitch, the
central line radius a, and the value of B. Let us now 4nd the channel length L as a function of the
technological constraints for the dimensions of the spiral channel.
If we denote the vertical distance between a single turn by Iz, then it is obvious that Iz¿H

is one condition for a spiral channel, where H is the external vertical size of the cross section
of the spiral channel, see Fig. 3. Since Iz is an increment of the z coordinate after each turn,
one can formulate the relation c12�¿H as a constraint for the coeEcient c1 in (1). For practical
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computations, we have used the relation

c1 =
 H
2�

; (2)

where the factor  ¿ 1 is to be determined with regard to dimension constraints.
Since line (1) is assumed to be the central line of a spiral channel, we will assume that at s= 0

the inequality z0(s)¿H=2 is satis4ed. We obtain the following inequality from the requirement that
the spiral compensator height does not exceed the value zmax: c1s6 zmax − H .
Substituting expression (2) for c1 into this inequality, we obtain

s6
zmax2�
 H

− 2�
 

: (3)

If in addition it is required that at least one complete turn of spiral is projected onto the plane z=0
(the number of turns in a spiral compensator is always larger than 1), then the following inequality
is obtained from constraint (3):

zmax · �
 H

− �
 
¿ �: (4)

If the values of zmax and H are known, then one can obtain from (4) also the constraint
� · zmax

H
− �¿ � ·  ;

or

16  6
zmax
H

− 1: (5)

Denote by � the angle between the spiral tangent and the vector of gravity force. By using the
elementary methods it is easy to obtain the following equation for the determination of angle �:

sin(�) =
√
1− cos2(�) = a√

a2 + c21
= const: (6)

According to (5) the maximum value of  is

 max = (zmax=H)− 1: (7)

Let us denote by c1;max the maximum admissible value of coeEcient c1 in (1). Then, in accordance
with (2) and (7),

c1;max =  max
H
2�
=

H
2�

(zmax
H

− 1
)
=

zmax
2�

− H
2�

: (8)

Since the coeEcient c1 should always satisfy the constraint c16 c1;max in order to ensure the in-
equality c1s6 zmax − H , we obtain, by elementary proof, the inequality

sin �=
1√

1 + c21=a2
¿

1√
1 + c21;max=a2

:

The least admissible value c1;min of coeEcient c1 in (1) is obtained from (2) at  =1: c1;min=H=(2�).
Denote by �min and �max the least and largest admissible values of the angle � in (6). Then it is
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obvious that

�min = arcsin


 a√

a2 + c21;max


 ; �max = arcsin

(
2�a√

4�2a2 + H 2

)
: (9)

Thus, we have found that one can vary the angle � within the interval �min6 �6 �max, and this
will not lead to the violation of the constraint for the vertical size of spiral compensator. We can
eEciently take into account these constraints for � in the computer code for the optimization of the
spiral compensator design by specifying the angle � as follows:

�= �min +  1(�max − �min); (10)

where  1 is a user-speci4ed coeEcient lying in the range 06  16 1.
After the angle � has been speci4ed, one can determine the coeEcient c1 with the aid of Eq. (6).

It follows from (6) that sin2(�) = a2=(a2 + c21), so that we obtain for c1 the formula c1 = a cot(�).
The value of  is then determined from (2). This value enables us to formulate the admissible
constraints for the parameter s: 06 s6 smax, where smax = (2�= )((zmax=H)− 1) with regard to (3).
Finally one can calculate with the aid of quantity smax the total length of the spiral channel:

L=
∫ smax

0
[(x′s)

2 + (y′
s)
2 + (z′s)

2]0:5ds=
√

a2 + c21 · smax: (11)

Formula (11) will be used below for the one-dimensional computation of nonstationary 6uid 6ow
in spiral channel with rectangular cross section see Eqs. (20).

4. Governing equations

The nonstationary 6ow in the spiral channel under study is characterized by the presence of shock
waves. For the mathematical description of such a 6ow the conservation laws are formulated for
mass and momentum in divergence form (RoLzdestvenskii and Yanenko, 1983; Voevodin and Shugrin,
1981):

@�
@t
+

@�w
@x

= 0; (12)

@�w
@t

+
@�w2 + p

@x
=−�g cos(�)− �

�
2D

|w|w: (13)

In Eqs. (12) and (13) � is the 6uid density, w is the velocity, p is the pressure, and g is the
acceleration due to gravity (9:81 m=s2). The computational formula for the angle � between the
spiral tangent and the vector of gravity force was already derived above, see (10).
To close Eqs. (12) and (13) the equation of state for 6uids

p= Ke5 ln(�=�0) (14)

is needed. The constant Ke5 , which is also known in the literature as bulk modulus, may be computed
for a rectangular channel as follows (Jenkner, 1971):

Ke5 =
1

1=EF + (B=H)4R(�)=15(d=H)3EM
; (15)
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where EF and EM are Young‘s modules of elasticity for 6uid and wall material, respectively, d is the
wall thickness, and B or H are the external dimensions of the channel cross section. The quantity
R(�) is the so-called rectangular factor:

R(�) =
1
2
(6− 5�) + 1

2

(
H
B

)5(
6− 5�

(
B
H

)2)
; � = 1− H

B
+
(
H
B

)2
: (16)

A check-up of the derivation of these formulas by the present authors has resulted in the conclusion
that it is necessary to slightly correct expression (15). It has the following form for the task to be
solved:

Ke5 =
1

1=EF + (B=H)4R(�)=10(d=H)3EM
: (17)

The term ��|w|w=(2D) in Eq. (13) takes into account the losses due to wall friction in channel.
A number of di5erent computational formulas for the wall friction number � were proposed by
Abramovich (1991) for the case of a stationary 6ow as functions of the Reynolds number and the
relative wall roughness. Because of the periodic shock waves the 6ow in a spiral rectangular channel
is strongly nonstationary. Therefore, we have used in the present work the following relations based
on the experimental data,

D =
B1H1

B1 + H1
; �=

0:021
D0:3 (18)

for the computation of the e5ective diameter D and the wall friction number � (Merenkov et al.,
1992). Here B1 and H1 are the internal dimensions of 6ow channel (see Fig. 3).
At the propagation of periodic shock waves, the regions with very low pressure may arise, which

may lead to cavity phenomena (SwaEeld and Boldy, 1993; Zhao, 1998). Such phenomena can, in
principle, be modelled and investigated within the framework of the one-dimensional model. Zhao
(1998) has proposed a simpli4ed cavity model, in which the 6uid column is separated into two
equal columns by a bubble 4lled with saturated vapour. A substantially more exact model would be
a model in which a transition zone is de4ned and in which gas bubbles are formed (Abramovich,
1991).
A simpli4ed method for the treatment of cavities is also applied in the subsequent computations. It

is based, as the governing partial di5erential equations (12) and (13), on the hypothetical assumption
that the continuity of 6owing medium always takes place in the region under consideration. Thus,
if the computed pressure becomes negative at some point, then this value is replaced with small
positive value p�, 06p�6 1 bar. This procedure enables us to apply Eqs. (12)–(14) over the total
length of spiral channel with rectangular cross section, including possible cavity regions.
The numerical solution of the system of Eqs. (12)–(17) is carried out with the use of nondimen-

sional values of pressure, density, and velocity, which are related to the dimensional quantities as
follows:

Pp=
p
Ke5

; P�=
�
�0

; Pw =
w
c0

; Px =
x
L
; Pt =

t
tref

: (19)

L is here the length of the spiral channel according to (11), and tref = L=c0.
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Substituting the expressions p= PpKe5 , �= P��0, etc., obtained from (19) into the 6ow equations
(12) and (13) we obtain the equations for barotropic 6uid 6ow in the following form:

@ P�
@Pt
+

@ P� Pw
@ Px

= 0;

@ P� Pw
@Pt

+
@ P� Pw2 + Pp

@ Px
=− P� gL cos(�)

v2ref
− P�

�L
2D

| Pw| Pw: (20)

In the nondimensional form, the equation of state (14) takes the form

Pp= ln P�: (21)

It may be seen from Eq. (20) that the pressure can become negative in those subregions, in which
the density �¡�0.
While describing the di5erence equations in the subsequent sections, we omit the bars over the

nondimensional quantities for the purpose of brevity of notation.
The Riemann invariants corresponding to Eqs. (12)–(14) can be derived from these equations as

follows:

dp
d�

=
Ke5
�
= c2 =

�0c20
�

;

dw ± 1
c�
dp= dw ± Ke5

c
d�
�2
= d

(
w ±

√
Ke5d�
�3=2

)
= d

(
w ∓ 2

√
Ke5√
�

)
= d(w ∓ 2c): (22)

From here the following expressions for the Riemann invariants are obtained:
v1 = w + 2

√
Ke5 =� along the characteristic dx=dt = w − c,

v2 = w − 2√Ke5 =� along the characteristic dx=dt = w + c.
These formulas will be used for the derivation of the di5erence boundary conditions at the lower

inlet and upper outlet of the spiral channel.
The initial conditions are as follows:

Pp(x; 0) = 0; Pw(x; 0) = Pw0; P�(x; 0) = 1; (23)

where Pw0 is the nondimensional 6uid velocity, which is obtained from the required volume rate Q0
and the area of 6uid 6ow cross section A= B1=H1,

Pw0 =−Q0=(Ac0): (24)

As the boundary condition at the inlet of the spiral compensator, that is at its lower side in the
direction of the percussion–rotary drill, two variants for the pressure function P0(t) are considered:
1. Smooth periodic function

p0(t) =
1
2

[
pmin + pmax + (pmax − pmin)sin

(
P!t − �

2

)]
: (25)

2. Periodic jump function

p0(t) =
1
2

[
pmin + pmax + (pmax − pmin) sign

(
sin
(
P!t − �

2

))]
: (26)

The values of pmin and pmax (0¡pmin¡pmax), that is the minimum and maximum pressure values
at the inlet of spiral channel, depend on the speci4c type of the percussion–rotary drill (for example,
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pmin = 0:2 MPa and pmax = 30 MPa). In this equation, P! is the angular velocity, P! = 2�f, and f
is the frequency of pressure oscillations (for example, 30 Hz).
The boundary conditions at the upper outlet of the spiral are determined depending on the 6ow

character at that end, as this will be shown in the subsequent sections.

5. Numerical schemes

5.1. The TVD scheme

The 6uid dynamics problem under consideration is characterized by the presence of strong dis-
continuities in the solution. It is, therefore, necessary to interpret the corresponding solution of the
governing equations of 6uid 6ow as the generalized solutions (RoLzdestvenskii and Yanenko, 1983).
It should be noted that there are suEciently many 4nite di5erence methods for the shock-capturing
computation of the generalized solutions of hyperbolic systems of conservation laws (see, for exam-
ple, LeVeque, 1992). Various monotonous and quasi-monotonous schemes having a high order of
accuracy in the sense of the Taylor expansion on smooth solutions have gained a widespread ac-
ceptance for the solution of such problems. The TVD scheme of Harten (1983), the ENO schemes
(Harten and Osher, 1987), the modi4ed Godunov type schemes (Toro, 1999) as well as their di5erent
modi4cations belong to such schemes.
The 4rst TVD schemes proposed by Harten (1983) and Yee et al. (1985) had the second order

of accuracy in subregions of smooth 6ow. A review of higher-order extensions of the TVD scheme
may be found in Daiguji et al. (1997).
In this section we describe a second-order variant of the TVD scheme, which is based on the

version of this scheme proposed by Yee et al. (1985). Before proceeding to the presentation of the
TVD scheme we would like to discuss the following two peculiarities of the dimensionless equations
(20) governing the barotropic 6uid 6ow.
The 4rst important peculiarity of system (20) is that it does not become sti5 in the case of low

Mach number 6ows. In order to show this let us rewrite the system of equations (20) in vector/matrix
form as

@U
@t
+

@F(U )
@x

= S(U ); (27)

where

U =

(
�

q

)
; F(U ) =

(
q

p+ �w2

)
: (28)

Here q= �w and S(U ) is the vector of source terms,

S(U ) =

(
0

S1(U ) + S2(U )

)
;

S1(U ) =−C1�; S2(U ) =−C2|q|w (29)



196 W. Schacht et al. / Fluid Dynamics Research 31 (2002) 185–213

with

C1 =
gL cos(�)

v2ref
; C2 =

�L
2D

: (30)

The Jacobi matrix A(U ) = @F(U )=@U has the form

A(U ) =

(
0 1

c2 − w2 2w

)
; (31)

where c is the sound velocity, c2 = 1=�. The eigenvalues �1, �2 of matrix (31) are as follows:

�1 = w − c; �2 = w + c: (32)

The condition number Cond(A) = ‖A‖ · ‖A−1‖ may be estimated as follows using the spectral norm
of a matrix:

Cond(A) =
max(|*1|; |*2|)
min(|*1|; |*2|) = c2

[
1− 2M 2(c4 − 1− 4c2)

c4 − 1− 4c2M 2

]1=2
+ O(M 3); (33)

where *1 and *2 are the singular numbers of matrix A, and M is the Mach number, M = |w|=c. It
follows from (33) that the quantity Cond(A) remains 4nite as M → 0: limM→0 Cond(A) = c2. In
other words, the system of equations (27), (28) does not become sti5 for low Mach number 6ows.
Despite the fact that the above noted 4rst peculiarity of the system of equations (27), (28)

alleviates certain diEculties related to its numerical integration, there is the second peculiarity,
which impedes the numerical integration of Eqs. (27), (28). It turns out that the source term S2(U )
in (29) is a sti5 source term. According to LeVeque and Yee (1990), a source term is considered
to be sti5 if the constant factor entering this term is suEciently large. In the case of actual spiral
compensators, the constant coeEcient C2 entering S2(U ) lies in the range 30¡C2¡ 60. LeVeque
and Yee (1990) considered the sti5 source terms involving the constant factors lying in the range
from 1 to 1000. Therefore, our source term S2(U ) may be considered as a moderately sti5 source
term.
The second source term S1(U ) in (29) proves to be of the order 10−4, which is very small. This

is explained by the fact that the spiral channel of an actual compensator has many turns, so that the
neighbouring turns adhere tightly to one another (see Fig. 2). Therefore, the angle � in (30) di5ers
little from �=2.
It was shown by LeVeque and Yee (1990) that in the case of sti5 source terms, a numerical

phenomenon of incorrect propagation speeds of discontinuities is observed. In addition, an overshoot
may appear in the numerical solution behind the discontinuity front even if a TVD scheme is used.
The following measures were proposed by LeVeque and Yee (1990) to resolve these diEculties: (i)
the use of implicit approximations for the sti5 source terms; (ii) the use of splitting methods, in
which one alternates between solving a system of conservation laws, with no source terms, and a
system of ordinary di5erential equations involving the source terms.
We now present a TVD scheme, which we have used for the numerical modelling of barotropic

6uid 6ow in spiral channel. It combines the ideas for the construction of TVD schemes proposed
by Yee et al. (1985), Yee and Harten (1987), and Takakura et al. (1989).
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We will assume in this section that the values of the numerical solution vector Un
j are computed

at the centres of the cells of an uniform grid in the interval 06 x6 1, so that

Un
j = U (xj; tn); xj = (j − 0:5)h; j = 1; : : : ; N − 1;

h= 1=(N − 1), tn = 10 + 11 + · · ·+ 1n−1.
The explicit TVD scheme used by us has the form

Un+1
j − Un

j

1n
+

F̃
n
j+1=2 − F̃

n
j−1=2

h
= Sn

j ; (34)

where

F̃
n
j+1=2 =

1
2
(Fn

j + Fn
j+1) + Rj+1=2’n

j+1=2: (35)

Here Fn
j =F(Un

j ), Rj+1=2 =R(Uj+1=2), and R is the matrix entering the representation A(U )=R3R−1,
where A(U ) is the Jacobi matrix (31) and

R=

(
1 1

w − c w + c

)
; 3=

(
w − c 0

0 w + c

)
; R−1 =

(
c+w
2c − 1

2c

c−w
2c

1
2c

)
: (36)

The quantity ’n
j+1=2 entering (35) was computed as follows (Yee and Harten, 1987):

’n
j+1=2 = {’(1)j+1=2; ’

(1)
j+1=2};

’(m)j+1=2 =
1
2  (l

(m)
j+1=2)(g̃

(m)
j + g̃(m)j+1)−  (l(m)j+1=2 + 6(m)j+1=2)�

(m)
j+1=2; m= 1; 2; (37)

where l(1)j+1=2 and l(2)j+1=2 are the eigenvalues of matrix A (31), that is

l(1)j+1=2 = wn
j+1=2 − cnj+1=2; l(2)j+1=2 = wn

j+1=2 + cnj+1=2;

and

 (z) = Q(z)− 1
h
z2; (38)

Q(z) =

{
1
2 (

z2

7 + 7); |z|¡7;

|z|; |z|¿ 7:
(39)

The value 7 in (39) is a user-speci4ed constant lying in the interval [0:01; 0:25] (Aki, 1989).
It is to be noted that the item (−1=h)z2 introduced into expression (38) for  (z) ensures the

second order of accuracy of scheme (34) in time in subregions of smooth 6ow (LeVeque, 1992).
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The values �(m)j+1=2 and 6(m)j+1=2 entering (37) are computed as follows:

�j+1=2 = {�(1)j+1=2; �
(2)
j+1=2}; �j+1=2 = R−1

j+1=2(U
n
j+1 − Un

j ); m= 1; 2;

6(m)j+1=2 =




1
2  (l

(m)
j+1=2)(g

(m)
j+1 − g(m)j )=�(m)j+1=2; �(m)j+1=2 
= 0;

0; �(m)j+1=2 = 0:

The values of Un
j+1=2 entering the expressions for Rj+1=2, l

(m)
j+1=2, and R−1

j+1=2 were computed as the
arithmetic means, that is Un

j+1=2 = 0:5(U
n
j + Un

j+1).

To enhance the resolution of shock wave fronts we computed the values g̃(m)j entering (37) by
formulas (Yee et al., 1985)

g̃(m)j = (1 + !(m)8(m)j )g(m)j ; m= 1; 2: (40)

The quantity g(m)j in (40) is called the 6ux limiter. Arora and Roe (1997) have formulated the general
requirements for the 6ux limiter functions. Many 6ux limiters were proposed in the literature until
now. Some of them were listed, for example, by Aki (1989) and Yee et al. (1999). As was noted
by Yee et al. (1999), the choice of an optimal 6ux limiter is problem dependent.
In order to 4nd an optimal 6ux limiter for the problem of one-dimensional barotropic 6uid 6ow

we have tried the following three 6ux limiters:

1. The 6ux limiter of Yee and Harten (1987):

g(m)j = S max[0;min(|�(m)j+1=2|; S�(m)j−1=2)]; S = sign(�(m)j+1=2): (41)

2. The 6ux limiter of van Leer (Van Leer, 1979; LeVeque, 1992):

g(m)j =
8̂
(m)
j + |8̂(m)j |
1 + 8̂

(m)
j

;

where

8̂
(m)
j =

9j+1=2U
(m)
j

9j−1=2U
(m)
j

; 9j+1=2U
(m)
j = U (m)

j+1 − U (m)
j :

Here U (1)
j = �n

j , U
(2)
j = qn

j = �n
jw

n
j .

3. The 6ux limiter from the works of Aki (1989) and Yee et al. (1999):

g(m)j =M [2�(m)j+1=2; 2�
(m)
j−1=2;

1
2
(�(m)j+1=2 + �(m)j−1=2)];

where the symbol M denotes conventional minmod operation de4ned as

M (x; y; : : :) =

{
S min(|x|; |y|; : : :) if sgn(x) = sgn(y) = · · ·= S;

0 otherwise:

As our test computations have shown, the well-known 6ux limiter of Harten (41) leads to the
most reliable and stable numerical algorithm. Therefore, all the computational results presented in
Section 6 have been obtained with the use of the 6ux limiter (41).
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For the quantity 8(m)j in (40) we have used the formula from Takakura et al. (1989):

8(m)j =
|9j+1=2U

(m)
j − 9j−1=2U

(m)
j |

|9j+1=2U
(m)
j |+ |9j−1=2U

(m)
j | ; m= 1; 2: (42)

The user-speci4ed constants !(m) in (40) can be di5erent from one characteristic 4eld to another.
Yee et al. (1985) have considered the values !(m) = 1 and !(m) = 2.
Note that Yee et al. (1985) have proposed the formula

8(m)j =
|�(m)j+1=2 − �(m)j−1=2|
|�(m)j+1=2|+ |�(m)j−1=2|

; m= 1; 2:

But our calculations of 6uid 6ows in spiral compensators have shown that the use of (42) leads to
a more reliable computer code.
For the approximation of the source term Sn

j in (34) we have used a simple one-point formula:

Sn
j =

(
0

−C1�n
j − C2|qn

j |wn
j

)
:

For the computation of the 6ux vector F(U ) on the left boundary x = 0, the values of �n
1=2 and

wn
1=2 are needed on this boundary. We have implemented a procedure similar to the one described
by Jameson et al. (1981). First of all we note that the 6uid pressure p0(t) on the left boundary
is known from the boundary condition (25) or (26). This enables us to 4nd the density value:
�n
1=2 = exp(p0(tn)). We now use the Riemann invariant v1 to compute the velocity value wn

1=2:
vn1 = wn

1 + 2c
n
1. Since this invariant is conserved along the characteristic dx=dt = w − c, we can

write approximately that wn
1=2 + 2c

n
1=2 = vn1. Since cn1=2 =

√
1=�n

1=2, we can 4nd the velocity value for

x = 0: wn
1=2 = vn1 − 2

√
1=�n

1=2.

A similar procedure was implemented on the right boundary x = 1 with regard to the fact that
the 6uid 6ow is always subsonic at this boundary of the spiral compensator. Let us at 4rst compute
both the Riemann invariants v1 and v2:

v1 = vn1;N−1 = wn
N−1 − 2cnN−1; v02 = w0 + 2c0 = w0 + 2:0;

where w0 is the 6uid velocity taken from the initial condition (23). That is we take the value of w0,
which corresponds to the given volume rate of 6uid supplied “at in4nity” by the pump located on
the ground surface, see also (24). Then on the right boundary x = 1 we obtain the needed values
�n
N−1=2 and wn

N−1=2 as follows:

wn
N−1=2 =

1
2
(vn1;N−1 + v02); �n

N−1=2 =

(
1

cnN−1=2

)2
=

[
1

1
4(v

0
2 − vn1;N−1)

]2
:

The time step 1n was computed as follows:

1n =min
j

Ch
|wn

j |+ cnj
: (43)
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Fig. 4. Computational grid.

The value cnj is here the sound velocity, c
n
j =
√
1=�n

j , and C is the Courant number, which must lie

in the interval 0¡C ¡ 1 to ensure stability of numerical computations.

5.2. Splitting in terms of physical processes

In this section, we consider one more di5erence scheme for the numerical integration of 6ow
equations (20). This scheme is similar to an explicit–implicit scheme of splitting in terms of physical
processes, which was proposed by Ostapenko (1997) for the numerical integration of the system of
the Saint-Venant shallow water equations, which is mathematically suEciently close to the 6uid
dynamic system, which is solved in the present work. This is a simple 4nite di5erence 4rst-order
method with linear arti4cial viscosity for the numerical solution of di5erential equations presented
in Section 4. A similar numerical method was used successfully by Ostapenko (1999) for numerical
solution of a two-dimensional two-layer shallow water problem.
We now present the di5erence equations of the scheme of Ostapenko (1999) as applied to the

6ow equations (20). At 4rst we de4ne in the interval 06 Px6 1 a uniform grid with the nodes

Pxj = (j − 1)h; j = 1; : : : ; N; (44)

where N is the number of grid nodes and h is the step size, h= 1=(N − 1). The velocity values wj

and mass 6ux values qj = (�w)j are computed in the above grid nodes, whereas the density values
�j+1=2 are computed in the middle of the intervals [xj; xj+1] (Fig. 4).
The di5erence scheme for the continuity equation (12) has the following form under the above

conventions:

�n+1
j+1=2 − �n

j+1=2

1n
+

qn
j+1 − qn

j

h
= 0; n= 0; 1; 2; : : : ; j = 1; 2; : : : ; N − 1: (45)

The quantity 1n is here the time step of the 4nite di5erence method, �n
j+1=2 = �( Pxj+1=2; tn), with

tn = 10 + 11 + · · · 1n−1, and Pxj+1=2 = (j − 1=2)h, qn
j = q( Pxj; tn). The density � is computed for each

time step t = tn+1 (n= 0; 1; 2; : : :). Eq. (21) is used to compute the corresponding pressure values:

pn+1
j+1=2 = ln �

n+1
j+1=2; j = 1; 2; : : : ; N − 1: (46)

The momentum equation (13) is approximated by using the splitting in terms of physical processes
(Ostapenko, 1999). At the 4rst stage, only the pressure term, the convection term, and the gravity
force are taken into account. The losses due to wall friction are not considered:

q∗j − qn
j

1n
+

qn
j+1w

n
j+1 − qn

j−1wn
j−1

2h
+

pn+1
j+1=2 − pn+1

j−1=2
h

=−C1�n+1
j +Wn

j : (47)

In this equation,

�n+1
j = (1=2)(�n+1

j−1=2 + �n+1
j+1=2); (48)
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and Wn
j is the so-called arti4cial viscosity, whose di5erential form is as follows:

W = ;1h(|w|qx)x + ;2hqxx: (49)

The arti4cial viscosity is introduced for the purpose of damping the parasitic oscillations of numerical
solution in the neighbourhood of shock waves. ;1 and ;2 are the constant and positive coeEcients,
which are determined with the aid of test computations of problems involving stationary shock
waves. These coeEcients must ensure a monotone localization of shock wave fronts at the minimal
oscillations (Ostapenko, 1999). The conducted tests gave for the task considered in this work the
values ;1 ≈ 0:8 and ;2 ≈ 0:15. The second term (;2hqxx) for the de4nition of the arti4cial viscosity
was added for the reason that the 6uid in6ow due to water shock reduces the value of |w| so
signi4cantly that the 4rst term (;1h(|w|qx)x) becomes insuEciently eEcient.
The approximation of Eq. (49) is as follows:

Wn
j = ;1h

|wn
j+1=2|(qn

j+1 − qn
j )− |wn

j−1=2|(qn
j − qn

j−1)
h2

+ ;2h
qn
j+1 − 2qn

j + qn
j−1

h2
: (50)

At the second stage, the e5ect of wall friction is taken into account by using the following implicit
approximation:

qn+1
j − q∗j

1n
=−�n+1

j C2|wn
j |
qn+1
j

�n+1
j

; (51)

where the constant coeEcient C2 is given by the second equation in (30). It follows from here that

qn+1
j = q∗j

(
1 + 1nC2|wn

j |
)−1 : (52)

Such an implicit approximation of wall friction in a channel ensures a stable numerical algorithm.
After the computation of qn+1

j , wn+1
j is determined from the equation

wn+1
j = 2qn+1

j =(�n+1
j−1=2 + �n+1

j+1=2): (53)

Without the arti4cial viscosity (;1 = ;2 = 0) the 4nite di5erence method has second order in
space and 4rst order in time, that is the error of this method lies in the order of smallness of
O(1n) + O(h2). The introduction of arti4cial viscosity, an indispensable tool for ensuring a stable
numerical algorithm at the computation of strong shock waves, leads to the reduction of the spatial
accuracy to the 4rst order.
Basing on the physical analogy with the Navier–Stokes equations the arti4cial viscosity is intro-

duced only into the momentum equation. The spatial approximation of the continuity equation then
has the second order also when the arti4cial viscosity is introduced.
We now present the di5erence boundary condition at the left end x = 0 of the spatial integration

interval. As in the case of the TVD scheme, the density value �n+1
1 is found from the boundary

condition (25) or (26) for 6uid pressure: �n+1
1 =exp(p0(tn+1)). Then the mass 6ow rate qn+1

1 at point
x = 0 is computed by using the one-sided di5erences:

q∗1 = qn
1 −

1
h
(qn
2w

n
2 − qn

1w
n
1)−

21
h
(pn+1

3=2 − pn+1
1 )− 1nC1�n+1

1 ;

qn+1
1 = q∗1=(1 + 1nC2|wn

1|); wn+1
1 = qn+1

1 =�n+1
1 :

For the de4nition of boundary conditions at the outlet of spiral (at x=L) the following two cases
are considered:
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1. The 6ow is in subcritical range, i.e., |w|¡c. Let us at 4rst denote by v01 the initial value of
the Riemann invariant v1 under the conditions w = w0 and c= c0, i.e. v01 = w0 + 2c0. In addition, it
is assumed that the conditions at x = +∞ are translated along the characteristic dx=dt = w − c at
point x = L for t¿ 0. In this case, the following relation is valid for x = xN = L:

wn+1
N + 2cn+1N = v01: (54)

With regard for the above-described splitting in terms of physical processes, the values of qn+1
N and

�n+1
n can be computed with the aid of (54) from the following equations:

q∗N − qn
N

1n
+

qn
Nw

n
N − qn

N−1wn
N−1

h
+

pn
N − pn

N−1=2
h=2

=−C1�n
N ; (55)

qn+1
N = q∗N =(1 + 1nC2|wn+1

N |) = b: (56)

Multiplying Eq. (54) with �n+1
N we obtain

qn+1
N + 2�n+1

N cn+1N = v01�
n+1
N : (57)

Substituting qn+1
N from (56) into (57) and assuming ==

√
�n+1
N we obtain from (57) the following

quadratic equation:

b+ 2== v01=
2; or v01=

2 − 2=− b= 0; (58)

with positive solution

�n+1
N = (1 +

√
v01b)

2=((v01)
2): (59)

For the case in which the velocity at x = L is constant the following equality obviously holds:

Pwn+1
N =−Q0=(Ac0): (60)

The value of qn+1
N is determined from Eqs. (55) and (56). Since the velocity Pwn+1

N is known in
accordance with formula (60), the density �n+1

N can be computed immediately from the relation
�n+1
N = qn+1

N =wn+1
N .

2. The 6ow lies in supercritical range, i.e., |w|¿c. Since this case is not encountered in the task
of numerical modelling of 6ow in spiral compensators, we will not present here the corresponding
di5erence equations for the right end i = N for the purpose of brevity. We only note that a stable
variant of these equations can be obtained by replacing the central di5erences in the above di5erence
equations (45) and (47) with the backward di5erences to approximate the derivatives with respect
to x in the governing 6ow equations.

6. Results

6.1. Program test

To validate the developed computer code we have compared the numerical results with the exact
analytic solution for the case of the propagation of a stationary shock wave in a channel. The exact
solution may be obtained from the following Rankine–Hugoniot relations:

u(�1 − �0) = q1 − q0; q1(u− w1)− q0(u− w0) = p1 − p0: (61)
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Fig. 5. Stationary shock wave in channel in the absence of source terms in (27) at t=0:746: (a) pressure and (b) velocity
of the 6uid. (◦ ◦ ◦) the scheme of Ostapenko; (—) the TVD scheme; (- - -) exact solution.

In these equations, u is the stationary velocity of shock wave. The quantities with subscript “1” refer
to the 6uid state behind the shock wave front, and the quantities with subscript “0” refer to the state
ahead of shock wave front. We consider the case in which the medium ahead of shock wave is at
rest, i.e., w0 = q0 = 0. It then follows from (61) that

u(�1 − �0) = q1; uq1 = q1w1 + p1 − p0: (62)

The multiplication of both sides of the 4rst equation in (62) by u implies

u2(�1 − �0) = uq1: (63)

Since in addition w1 = q1=�1 and, thus, q1w1 = q21=�1 = u2(�1 − �0)2=�1, the second equation of (62)
may also be rewritten as

u2(�1 − �0) = u2(�1 − �0)2=�1 + p1 − p0: (64)

Formulas (63) and (64) yield the following formula for the squared shock wave velocity:

u2 = (�1=�0)[ln(�1)− ln(�0)]=(�1 − �0): (65)

If the values �0 and �1 are given, then one can compute with the aid of (65) the velocity of
stationary shock wave, and the formula

w1 = u(�1 − �0)=�1 (66)

and (21) yield also the values of the velocity and pressure behind its front.
Since the strength of shock waves in spiral compensators is relatively weak we have taken ap-

proximately the same value of the dimensionless 6uid density �1 as in the case of 6uid 6ows in
spiral compensators: �1 = 1:01, �0 = 1:0. We have considered two cases:

(a) there are no source terms in the governing equations (27), (28), that is C1 = 0, C2 = 0 in (29);
(b) there are nonzero source terms whose coeEcients have approximately the same magnitude as

in spiral compensators; we have used the values C1 = 0:001 and C2 = 50:0 in (29).

Fig. 5 shows the computational results for the case of the absence of source terms in 6ow equations
(27). Then the exact solution (65), (66) and (21) is exactly applicable.
In the case of the TVD scheme we have used the values: C =0:25 in (43), !(1) = 0:5, !(2) = 0:5

in (40), 7= 0:125 in (39).
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Fig. 6. Stationary shock wave in channel in the presence of source terms in (27) at t = 0:746: (a) pressure and (b)
velocity. (◦ ◦ ◦) the scheme of Ostapenko; (—) the TVD scheme; (- - -) exact solution for the case of the absence of
source terms in (27).

In the case of the scheme of Ostapenko, C=0:5 in (43), ;1 = 1:0, ;2 = 0:15 in (50). The number
of grid nodes N = 101 for both the 4nite-di5erence methods. It can be seen from Fig. 5 that the
TVD scheme ensures monotone numerical solution pro4les, which are steeper in the region of the
smeared shock wave front than in the case of the Ostapenko’s scheme (45)–(52).
It may be seen from Fig. 6 that the exact shock wave speed is reproduced correctly by both the

TVD scheme and the Ostapenko’s scheme despite the presence of a moderately sti5 source term in
the momentum equation. The presence of source terms (29) with C1 = 0:001 and C2 = 50:0 leads
to the reduction of the pressure and velocity values behind the shock wave front as the time t (and
the distance propagated by the shock wave) increases.

6.2. Numerical modelling of real :ow processes

After a successful test the code can be used for the investigation of real 6ow processes in the
spiral channel with rectangular cross section in Fig. 7.
The purpose of these studies is 4nally the determination of such geometric parameters of the

spiral, which ensure the maximum damping e5ect for the periodic shock waves propagating from
bottom to top.
The following assumptions are made for the solution of this task:

1. The time interval [0; tmax] for the solution of Eqs. (12)–(14) is chosen in such a way that many
shock waves propagate along the spiral channel. The resulting number of time steps then has, at
a Courant number C = 0:5, the order of magnitude of 8000.

2. The geometry of the spiral channel with rectangular cross section is according to (2), (5), and
(7) a function of the parameters

a; B; H; d; zmax;  1: (67)

Let us denote by pout the maximum 6uid pressure at the upper outlet of the spiral compensator.
The computations clearly show that this pressure value depends strongly on the 6uid volume rate
Q0. With regard to the desired damping e5ect, i.e., the reduction of the inlet pressure oscillating
between pmin and pmax to the maximum outlet pressure pout, which depends both on Q0 and
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Fig. 7. Model of spiral channel.

the elasticity modules EF and EM, the following function may be obtained from (67) for the
determination of pout:

pout = F(a; B; H; d; zmax;  1; pmin; pmax; Q0; EF; EM): (68)

3. Large computer expenses resulting from (68) can be reduced very signi4cantly by the speci4cation
of the following parameters:

EF = 20:5× 108 N=m2; EM = 200× 109 N=m2;

d= 1 cm; zmax = 0:9 m;

a= 13 cm;  1 = 0:99;

1 MPa6p0(t)6 16 MPa; �0 = 1100 kg=m3:

As a result, function (68) reduces to

pout = F(B;H;Q0): (69)

The following tables present the computed results for the case of a periodic pressure jump function
1 MPa6p0(t)6 16 MPa (Fig. 8(a)) with the frequency 25 Hz versus the arguments of function
(69). In practical calculations, the value of pout was found at the last time step as the pressure value
at the 4rst local maximum nearest to the upper end in the pressure pro4le p(x; t).
Since the above-described TVD scheme contains a number of user-speci4ed parameters it was

important to 4nd those values of these parameters, which ensure the monotone numerical solution
with steep pro4les in the zones of smeared shock waves. For de4niteness we have taken the case
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Fig. 8. The pressure distributions: (a) the pressure p0(t) at the spiral inlet as a function of time; (b)–(d) the numerical
solution for the pressure at the spiral outlet x = 1 as function of time: (b) !(1) = 1; !(2) = 0:5; (c) !(1) = 1; !(2) = 1:0;
(d) !(1) = 1; !(2) = 1:5.

considered below in the extreme right column of Table 2: the volume rate Q0=600 l=min., B=0:09 m,
H = 0:0428 m. For the series of runs presented in Fig. 8, a discontinuous pressure curve (26) was
used at the spiral inlet x=0. It was found by numerical experiments that the constant 7 in (39) can
be taken in the interval 0:16 76 0:15. The results presented in Figs. 8(b)–(d) were obtained with
7 = 0:125. The dashed line shows in these 4gures the maximum value pmax = 160 bar in the left
boundary condition (26) for the pressure.
The number of the executed time steps in all runs presented in Fig. 8 is the same: n = 16 000,

the Courant number C = 0:25 in (43). The number of grid nodes N = 201 for all runs.
The purpose of the runs presented in Figs. 8(b)–(d) was the determination of optimal param-

eters !(1) and !(2) in (40). As can be seen from Fig. 8, the optimal combination of !(1) and
!(2) is as follows: !(1) = 1:0, !(2) = 0:5. One can, of course, also take the values of !(2) in the
interval 06!(2)¡ 0:5, but the width of the zone of smearing of shock waves becomes larger as
!(2) reduces. With an increase in !(2), so that !(2)¿ 0:5, the overshoots appear in the pro4le of
p(1; t), and their amplitude increases with !(2). We can explain this phenomenon qualitatively as
follows. When larger values of !(2) are taken, the TVD scheme becomes less dissipative in the
regions of smeared shock wave fronts (the pro4les become steeper in these zones). As a result,
the numerical dissipation becomes insuEcient to suppress the sti5ness of the moderately sti5 source
term S2(U ) in (29), and this leads to the appearance of overshoots in the numerical solution pro-
4les.
As was mentioned in Section 5 under the choice of the function  (z) in form (38) the TVD

scheme (34)–(42) has the second order of accuracy both in space and time in the subregions of
smooth 6ow. This form of  (z) was used for the runs of Fig. 8. It was interesting to elucidate the
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Fig. 9. The pressure distributions along the spiral channel obtained with the aid of the TVD scheme at !(1) = 1, !(2) = 0:
(a) C = 0:25, n= 16 000; (b) C = 0:50, n= 8000; (c) C = 0:506, n= 8000.
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Fig. 10. The pressure distributions versus time at the spiral outlet computed by the TVD scheme at !(1) = 1, !(2) = 0:
(a) C = 0:25, n= 16 000; (b) C = 0:50, n= 8000.

e5ect of using  (z) in the following form:

 (z) = Q(z): (70)

Then the TVD scheme becomes 4rst-order accurate in time. The runs presented in Figs. 9 and 10
di5er from those of Fig. 8 mainly by the use of (70) instead of (38). It can be seen from Fig. 10
that the numerical solution becomes nonmonotonic at C = 0:5; at larger values of C the amplitude
of numerical oscillations increases nonlinearly with C, so that the TVD scheme becomes unstable
for C = 0:6.
It may be seen from Fig. 9 that the smearing of shock wave fronts becomes more intense as

the value of C increases. This may be explained by the fact that since the time step 1 increases
with the Courant number, the size of the approximation error of the order O(1) also increases
linearly with 1. However, even at small values of the Courant number the smearing of shock
wave fronts is more intense than in the case of using the function  (z) (38), cf. Fig. 11(a). Un-
der the optimal values !(1) = 1:0, !(2) = 0:5 the TVD scheme presented in Section 5 remains
stable for 0¡C6 0:33 in (43). The numerical results presented below in Tables 1–4 were
obtained with C = 0:25 and the function  (z) (38). In Figs. 11 and 12 we present the com-
parison of the computational results obtained by the TVD scheme (solid lines) and the scheme
of Ostapenko (dashed and dotted curves). In the case of the Ostapenko’s scheme, the Courant
number C was taken to be equal to 0.5 and, thus, only 8000 time steps were needed to achieve
the same moment of time as in the case of the TVD scheme. The Riemann invariant v1 = v01
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Table 1
The values of the pressure pout at the upper outlet of spiral compensator for Q0 = 1000 l=min, A= B1H1 = 12 cm2

B; m 0.04 0.044 0.05 0.06 0.07 0.08
H; m 0.08 0.07 0.06 0.05 0.044 0.04
pout(TVD); bar 172.46 174.49 176.09 178.40 177.33 173.09
pout(Ost:); bar 173.16 175.45 177.22 178.54 175.77 171.65

Table 2
The values of the pressure pout at the upper outlet of spiral compensator for Q0 = 600 l=min; A= B1H1 = 16 cm2

B, m 0.0466 0.052 0.06 0.07 0.08 0.09
H , m 0.08 0.07 0.06 0.052 0.0466 0.0428
pout(TVD); bar 157.18 159.23 160.13 158.84 153.25 143.26
pout(Ost:); bar 156.60 158.81 159.61 159.27 152.55 142.30

Table 3
The values of the pressure pout at the upper outlet of spiral compensator for Q0 = 300 l=min, A= B1H1 = 24 cm2

B, m 0.05428 0.06 0.07 0.08 0.09 0.10
H , m 0.09 0.08 0.068 0.06 0.05428 0.05
pout(TVD); bar 155.52 151.13 151.63 152.74 144.20 131.43
pout(Ost:); bar 154.08 147.40 147.98 156.29 147.52 131.42

Table 4
The damping e5ect versus the volume rate Q0, B=H = 1, B = 0:06 m

Q0 l=min 300 400 500 600 700 800 900 1000 1100 1200
pout ; bar 156.2 156.9 157.6 159.6 161.5 163.5 165.4 167.3 169.1 170.9
pout ; bar 150.9 153.0 154.8 156.5 158.0 151.3 160.5 161.5 162.3 163.1
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Fig. 11. Computed results for the pressure and velocity along the spiral channel for the moment of time t = 0:3327 s.
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Fig. 12. Computed results for the pressure and velocity at the spiral outlet versus time.

was used here as the right (upper) boundary condition. Fig. 12 con4rms the damping e5ect of
spiral.
It can be seen from Fig. 11 and especially Fig. 12 that the results obtained by both the 4-

nite di5erence methods are very close to each other. Both methods produce the same 4ne details
of the temporal behaviour of 6uid pressure and velocity at the upper outlet of the spiral com-
pensator despite the fact that the TVD scheme and the di5erence scheme of Ostapenko are very
di5erent in their structure. However, the TVD scheme requires a much larger CPU time to ex-
ecute the same number of time steps on the same spatial grid: it requires the CPU time, which
is by a factor of about 4.66 larger than in the case of the Ostapenko’s scheme. Taking into ac-
count the fact that in the case of the TVD scheme we had to restrict the Courant number by
the value 0.25, the TVD scheme requires a double number of time steps to achieve the same
moment of time as in the case of the Ostapenko’s scheme (which produces acceptable results
for C6 0:8). With regard to this constraint for the Courant number, the above-described TVD
scheme is computationally more expensive than the scheme of Ostapenko by a factor of about
9.32. Thus, the scheme of Ostapenko is undoubtedly more advantageous, in terms of needed CPU
time, than the above-presented TVD scheme for the numerical modelling of 6ow processes in spiral
compensators.
The symbols pout(TVD) and pout(Ost:) in Tables 1–3 denote the values of the maximum pressure

pout at the upper outlet of the spiral compensator, which were obtained by the TVD scheme and the
scheme of Ostapenko, respectively.
It may be seen from Table 1 that at a volume rate Q0 = 1000 l=min and free 6ow cross section

A=12 cm2, the damping e5ect obviously does not take place. At a volume rate Q0 = 600 l=min and
free 6ow cross section A= 16 cm2, a little damping e5ect appears, see Table 2.
At a volume rate Q0 = 300 l=min and free 6ow cross section A = 24 cm2, a signi4cant damping

e5ect is seen (Table 3).
Table 4 illustrates the e5ect of the volume rate Q0 on the damping e5ect for the case of a

square cross section (B = H = 6 cm), i.e., B=H = 1. It may be seen that the pressure reduction at
the outlet takes place only at the volume rate Q06 600 l=min. The disappearance of the damping
e5ect at a further increase in volume rate agrees with Eq. (24), which shows that the velocity Pw0
also increases, i.e., the pressure head (1=2)�0w20 also increases. When the shock wave propagating
upwards encounters the 6uid 6owing downwards this results, at a suEciently high pressure head, in
an increase in the shock strength, the e5ect, which is well known both in theoretical and applied
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Fig. 13. Computed results for the pressure and velocity in the case of Q0=600 l=min: (a) the temporal pressure distribution
according to the left boundary condition (25); (b), (c) the pressure and velocity distributions along the spiral channel
computed by the TVD scheme and Ostapenko’s scheme for di5erent moments of time: (—) t=0:3244 s; (- - -) t=0:3327 s;
(· · ·) t = 0:3410 s; (d) the 6uid pressure as a function of time at the spiral outlet computed by the TVD scheme and
Ostapenko’s scheme.

6uid dynamics (RoLzdestvenskii and Yanenko, 1983). At smaller pressure heads, the shock wave
strength is damped by 6uid friction at the wall as well as by gravity force in the spiral channel.
In the case of a smooth pressure curve (25) at the spiral inlet (see Fig. 13(a)), the maximum

pressures at the outlet of spiral are obtained, which are presented in the last row of Table 4 versus
the volume rate Q0. The damping e5ect is still present even at a volume rate of 800 l=min.
In Fig. 13 we present some computational results obtained in the case of Q0 = 600 l=min and a

smooth pressure function (25) at the spiral inlet. In this case, the numerical solutions obtained by
the TVD scheme and Ostapenko’s scheme coincide within the graphical accuracy. It can be seen
from Figs. 13(b) and (c) that in the case of a smooth boundary condition (25), the 6uid 6ow in
the spiral compensator represents a sequence of alternating compression and rarefaction zones. Thus,
there are no shock waves, in contrast to the case of using a discontinuous pressure function (26).
Such a 6ow regime would be more desirable for the operation of the spiral compensator to improve
its wear resistance and to prolong its working life.
We have also investigated the variant of the boundary condition, in which the discontinuous

pressure curve was used at the inlet (Fig. 8(a)) together with a user speci4ed 4xed volume rate
Q0=600 l=min. The area of the internal cross section of the spiral channel was taken to be the same
as in the case of Figs. 8–12. The numerical results clearly show that the pressure in spiral at time
t =0:099 s (which corresponds to 3000 time steps) reaches a value of 300 bar (Fig. 14). Such 6ow
conditions are inadmissible from the technological viewpoint because they lead to the destruction of
the drilling device.
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Fig. 14. Numerical results for the pressure and velocity at a 4xed 6ow rate computed by the Ostapenko’s scheme: (a) the
pressure distribution along the spiral channel at t = 0:099 s; (b) the 6uid velocity along the spiral channel at t = 0:099 s;
(c) the pressure versus time at the spiral outlet Px = 1; (d) the velocity versus time at the spiral outlet Px = 1.

7. Conclusions

The purpose of the present work is the numerical modelling and the determination of the op-
timal design of spiral pressure compensators for the percussion–rotary drills. On the basis of the
one-dimensional model and eEcient 4nite di5erence methods, the nonstationary pressure and 6ow
processes were investigated in the 4rst approximation in such 6ow channel for the case of periodic
pressure shocks (boundary conditions). The following conclusions can be drawn from the conducted
numerical computations and analysis:
1. An optimal damping of periodic pressure shocks can be ensured, for a given 6ow rate Q0, by

a correct choice of the area of the rectangular free 6ow cross section A. For a given area A of cross
section, the damping e5ect increases when the channel width is larger than its height and when each
channel turn lies close to the neighbouring turns ( = 1 in (2)).
2. The damping e5ect can be enhanced further by the smoothing of the pressure pro4le p0(t)

at the spiral inlet. The present authors, therefore, propose to install an additional valve with
spring, which is opened by pressure shocks not instantaneously, but with a certain adjusted
delay.
The one-dimensional model does not take into account a complex propagation and re6ection of

shock waves in a strongly curved channel. The actual damping e5ect, which is encountered in
practice, is therefore always stronger than that computed in the present work. For this reason, the
one-dimensional numerical model must be generalized for the case of a three-dimensional model.
This work is now in progress.
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Further research is needed in the domain of the mathematical modelling of cavity phenomena in
spiral channel. They are related especially to the phenomena, which involve the formation of gas
bubbles in the 6uid.
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